
Towards an autonomous airborne
robotic agent

Daniel Soto-Guerrero1, José Gabriel Ramı́rez-Torres2 and Jean-Pierre
Gazeau3

1,2Cinvestav Tamaulipas, México e-mail: dsoto@tamps.cinvestav.mx,
e-mail: grtorres@tamps.cinvestav.mx
3Institut Pprime, CNRS Université de Poitiers e-mail:
jean.pierre.gazeau@univ-poitiers.fr

Abstract.

Commercialy available Unmanned Aerial Vehicles (UAVs) rely on the
Global Positioning System (GPS) to define their flight plan, while assum-
ing an obstacle-free environment. The work presented on this article aims to
set the foundation towards an autonomous airborne agent, capable of locating
itself by means of computer vision, modeling its environment, planning and
executing a three dimensional trajectory. On the first stage of development
we solved the localization problem using artificial markers and tested a PID
controller to make the vehicle follows a given trajectory (a lemniscate); as
results, we show flight data captured during real flights. This development
would facilitate the integration of far more complex flight behaviors than
GPS only guided flight plans.

1 Introduction

In order to make an autonomous agent out of a UAV, it is required to locate
the vehicle with respect to a fixed reference frame, to know its environment
and to command it to navigate autonomously. So, given a fully functional
UAV with an onboard camera, we aimed to: a) guarantee a safe operation of
the UAV b) locate it with respect to a fixed reference frame on the ground,
using visual feedback and c) control the vehicle so it can execute flight pat-
terns.

The following sections describe the accomplished intellectual develop-
ments, the architecture of the control application, its capabilities and further
possible developments.

1

Author's
 vers

ion

dsoto@tamps.cinvestav.mx
grtorres@tamps.cinvestav.mx
jean.pierre.gazeau@univ-poitiers.fr

2 Daniel Soto-Guerrero1, José Gabriel Ramı́rez-Torres2 and Jean-Pierre Gazeau3

Ground Control Station (GCS)

Planner

Sequencer

Low level control

Unmanned Aerial Vehicle

Environment
information

and
UAV
flight

statements

System
monitoring,

fault
detection,
diagnosis,
isolation,
toleration

Software application

P
re

ci
si

on
in

cr
ea

se

In
te

ll
ig

en
ce

in
cr

ea
se

Fig. 1: The three-layer software architecture for an autonomous robot.

2 Related work

A robot consists of a series of highly heterogenous systems that are com-
plex in nature and require an orchestrated integration to function properly,
some of those features to name a few are: multi-robot coordination, collision
avoidance, human interaction and planning. Therefore, control architectures
are proposed to organize by hierarchies the modules providing different func-
tionalities; among one of the most important, the posibility to have a digital
representation of the environment on the computer controlling the robot.

The hierarchical architecture of the control application is based on designs
already tested in mobile robotics, such as the one proposed by Chen et al.
[1] (see Fig.1). The architecture consists of three layers: a) the Low level
control layer allows to directly manage and access all hardware peripherals
in real-time. b) the planner is the process that gives the current status of the
robot and its environment, creates a plan for the robot to achieve a certain
goal, c) the sequencer is the intermediate layer between the low level control
and the planner that implements a set of well-tested [7] behaviors that can
be used in sequence to execute the plan created by the planner.

Similar architectures to the one shown on Fig. 1 have been used for service
robotics, industrial robots interacting with humans [2] and a group of identi-
cal robots [10, 5]; their description may differ, but all of their corresponding
software architectures can be shaped to a three layer architecture so the ob-
jective would remain the same: to provide sensing, planning, supervision and
execution capabilities to fulfill a task. As an example, the ability layer on a
service robot mentioned by Luna-Gallegos et al. [7] can be grouped into the
sequencer layer mentioned on this paper as a set of well-tested behaviors.

On the field of UAVs, control architectures have been tested following a
reactive approach, i.e. they act proportionally to an error metric, usually
defined by finding and tracking an object with computer vision [12, 11]. On
this article, we describe how we plan to develop a three layer architecture for
the control of UAVs and the first steps we have taken.

Author's
 vers

ion

Towards an autonomous airborne robotic agent 3

Motors and
propellers

Front camera

WiFi, battery and
autopilot system

(a) The AR-Drone.

Motors and propellers.

Digital camera.

GPS, radiocontrol, battery
autopilot system.

(b) Front side of the Solo.

Fig. 2: The two drones tested.

3 Hardware description

This work was successfully tested with two different vehicles, for which we
had to use two different versions of the Low level control layer. The first
UAV we tested was the Solo from 3D Robotics, which is compatible with the
MAVLink protocol [8] and the second vehicle we tested was the AR-Drone
v2. Both platforms are ready-to-fly UAVs and feature an onboard monoscopic
camera and a WiFi link.

To connect to the AR-Drone, we used the package created to control it with
ROS. The software development was based on the Linux operating system
and the Robotic Operating System (ROS) [9]. For the Solo (see Fig. 2b) we
used Gstreamer1 to receive the video feed and Dronekit (the python library
created to interface with UAVs compatible with MAVlink) to gain access to
the vehicle. For each vehicle we have a hardware remote control, the pilot has
the option to intervene or not in basic maneuvers such as take-off and landing.
We gave a bigger priority to pilot commands over autonomous control; in
case of unforeseen situations, the pilot can bypass the autonomous control
immediately by operating the hardware controller.

The approach we tested was implemented into a three layer architecture
on ROS, this simplifyed its development and looking into the future it will
make possible two things: the creation of a swarm of UAVs and its migration
onboard the UAV. Increasing the independency of the UAV from the Ground
Control Station (GCS).

4 Proposed approach and methodology

The overall disposal of all components, according to the three layer architec-
ture structructure is shown in Fig. 3. The hardware interface to the AR-Drone

1 Webpage: http://gstreamer.freedesktop.org/

Author's
 vers

ion

4 Daniel Soto-Guerrero1, José Gabriel Ramı́rez-Torres2 and Jean-Pierre Gazeau3

Kalman
Filter

TFTF

Camera
Driver

Computer
Vision

TFTF

Hardware
Interface

PD
Controller

Error
Estimation

TFTF

Trajectory
generator

TFTF

Planner

Low
Level
Control

Sequencer

Planner

TFTF

Ground
Control
Station

Fig. 3: The three-layer architecture for the UAV

was the only component fully functional and running on ROS when this de-
velopment started. From top to bottom we show the GCS and the planner
node, the planner remains as future work. The trajectory planner generates
the lemniscate trajectory and defines the desired position for the drone rd(t).
The low level control consists on several nodes, the first one being a hardware
interface to the flight controller of the drone and the camera. The current
state estimation is accomplished with the computer vision and kalman filter
nodes, the current state is then used to define a proper control command in
the error estimation and PD controller nodes.

As mentioned before, we aimed to locate the UAV using visual feedback
to command it and describe a certain trajectory. The proposed scenario is
shown on Fig. 4, the UAV overflies artificial markers fixed on the ground,
pointing its camera downwards, the video feed and navigation data are sent
to the GCS for processing. Figure 4 also shows the reference frames attached
to the monoscopic camera C, the world reference frame W , the center of
gravity of the vehicle B and the NED frame (X: North, Y: East, Z: Down).

Dealing with spatial relationships between reference frames is a very com-
mon task in robotics, expressed as homogeneous transformations W

CT the
rigid body transformation from reference frame C to W is denoted by:

W
CT =

(
W
CR

W
Ct

0 1

)
where W

CR ∈ SO(3) and W
Ct are the rotation and translation components,

respectively. We used the work from Foote [3] to manage all rigid body trans-
formations. Note that by solving W

CT, we can locate B with respect to W . Be-
cause the camera is rigidly mounted on the UAV B

CT is known beforehand and

the location of B with respect to W can be computed with B
WT = B

CT
W
CT

−1.
To compute WCT we used the technique developed by Garrido et al. [4]; which

Author's
 vers

ion

Towards an autonomous airborne robotic agent 5

rd(t)

B

C

W

F
ield

of
view

of
the

cam
era

Ground control station
Portable personal computer
and the controller of the Solo

NED

North

East

DownW
CT

Fig. 4: The use case scenario for the 3DR Solo. For every reference frame,
the color convention is: X axis red, Y axis green and Z axis blue. Notice the
orientation of B is similar to the NED reference frame.

consists on segmenting from the images taken by the camera the artificial
markers located on the ground, beacause the size of every marker is known,
the pose of the camera is estimated from all the detected corners.

We added a Kalman filter [6] over B
WT to improve the resilience to errors

caused by inaccuracies in inertial measurements, camera parameters, corner
detection, image rectification and pose estimation. The state vector for the
Kalman filter was defined as x = [x, y, z, ψ, ẋ, ẏ, ż, ψ̇], it defines the position
and velocities of the XYZ coordinates and the yaw around the z-axis angle
with respect to W . From the inertial sensors onboard the UAV, we receive the
horizontal velocity components with respect to the B reference frame, current
flight’s height and orientation zI = [vx, vy, h, Ψ]k,B at 200Hz; the a priori
estimate of the Kalman filter was updated using the inertial measurements
with respect to W by rotating Ψ radians around the yaw ψ axis. The state
transition model is:

[
x
y

]
k+1

=

[
x
y

]
k

+∆tRz(ψ)

[
vx
vy

]
k

żk+1 =
hk − zk
∆t

zk+1 = hk

[
ẋ
ẏ

]
k+1

= Rz(ψ)

[
vx
vy

]
k

ψ̇k+1 =
Ψk − ψk
∆t

ψk+1 = Ψk

Author's
 vers

ion

6 Daniel Soto-Guerrero1, José Gabriel Ramı́rez-Torres2 and Jean-Pierre Gazeau3

W

Crd(t)

B NED

Trajectory
generator
(24Hz)

Computer
Vision (25Hz)

Kalman
Filter

(24Hz) Inertial
measurment
(200Hz)

Fig. 5: The graph representing the rigid body transformation between frames.

The a posteriori step runs at 24 Hz, a slower rate than the a priori, using as
measurement the pose of the camera zC = [x, y, z, ψ]k, estimated by computer
vision [4]. After the update process in the Kalman filter, state vector x defines
the latest estimation for the pose of the UAV with respect to W , i.e. B

WT.
For now, the trajectory to be described by the vehicle is a lemniscate,

defined as a parametric function rd(t) that defines the desired position and
pose (Euler angles: roll θd, pitch φd and yaw ψd, see Fig. 6b):

rd(t) =

xd(t)

yd(t)

zd(t)

ψd(t)

 =

a sin(tε)

b sin(2t
ε)

c sin(3t
ε)

0

 (1)

Figure 5 shows the resultant directed graph using nodes as reference frames
and labels on edges as the processes that update the spatial relationship be-
tween two reference frames. The direction of every edge represents the origin
and target frames of the homogeneous transform. Then, the error measure-
ment is given by:

rd
BT =

[
Re te
0 1

]
= rd
WT B

WT−1

After decomposing (θ, φ, ψ)e = Re on its three Euler angles we can com-
pute a control command using a Proportional-Derivative controller:

u = Kp

[
rd(t)− x

ψe

]
+Kd(ṙd − ẋ)

where x = [x, y, z, ψ] and ẋ = [ẋ, ẏ, ż, ψ̇] are estimated by the Kalman
filter described before.Author's

 vers
ion

Towards an autonomous airborne robotic agent 7

5 Results

(a) Artifical markers and the AR-Drone. (b) The virtual scneario on Rviz.

Fig. 6: The software architecture working, creating a virtual representation of
the real world and locating the drone with resect to the center of the ArUco
board.

The proposed approach was tested with the AR-Drone 2.0 and the 3DR
Solo. The AR-Drone was modified, so the front camera pointed downwards
and we could get a higher quality image from above the ground level. The
Solo had a gimbal installed, as a result, we dynamically had to compute B

CA
using the navigational data we received from the UAV. The camera settings
for the GoPro are very versatile, for this exercise, we used a narrow field of
view with a resolution of 1028× 720 pixels. The AR-drone was flown indoors
at a maximum altitude of 1.4 meters, the Solo flew outdoors and gained
altitude to 5 meters above ground level.

The computer vision algorithm was set to track a board of artificial mark-
ers with different sizes; for the Solo the board measured 1.4× 2.4m and 2× 5
artificial markers, for the AR-Drone we used a board 4 × 4m and 20 × 21
markers (see Fig. 6a). The application here described creates a virtual repre-
sentation of the world on Rviz, an standard tool on ROS; what is shown on
Fig. 6b is an screenshot of Rviz displaying: the location of the vehicle, the
trajectory to follow and the detected board.

On Fig. 7, we display the results as measured by the computer vision
system while executing the lemniscate maneuver in x and y coordinates with
respect to W . The rd plot is the desired trajectory, corresponding to the
lemniscate, for completeness, we also display the error plot. The maximum
measured error was 30 cm. The paramters for the lemniscate trajectory with
the AR-Drone were: a = 1.0, b = 0.8, c = 0.2, ε = 30.0, with a height offset
of z = 1.2.Author's

 vers
ion

8 Daniel Soto-Guerrero1, José Gabriel Ramı́rez-Torres2 and Jean-Pierre Gazeau3

0 20 40 60 80 100 120 140 160 180
−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

X
p
os
it
io
n
[m

]

rd,x
x
ex

0 20 40 60 80 100 120 140 160 180
−1.5

−1

−0.5

0

0.5

1

1.5

Time [s]

Y
P
os
it
io
n
[m

]

rd,y
y
ey

Fig. 7: Navigation data of an actual flight of the vehicle describing the lemnis-
cate trajectory. On both graphs we display the desired trajecty, the estimated
position and the error metric.

6 Conclusions and future work

We have discussed a three layer architecture intended for the control of UAVs,
that successfully guided the vehicle to describe the spline trajectory. Because
the framework we used for this development runs on multiple platforms, in-
cluding ARM on embedded computers, it is plausible to execute it onboard
the UAV. Further development on the Sequencer and Planner layers would
make the UAV and autonomous agent and leads the way towards a swarm
of UAVs. Additionaly, the planner that defined the waypoints will be ex-
tended with a path-finding algorithm. This architecture will make possible
to integrate far more complex flight plans and do not only rely on GPS for
positioning.

This document shows the results from the first step on our development
and implementation roadmap. The next step is to execute it onboard the
UAV. We are currently looking forward to extending the computer vision
system with an visual odometry approach.

References

1. H. Chen, X. m. Wang, and Y. Li. A survey of autonomous control for uav. In

Artificial Intelligence and Computational Intelligence, 2009. AICI ’09. International
Conference on, volume 2, pages 267–271, Nov 2009.

2. G. Dumonteil, G. Manfredi, M. Devy, A. Confetti, and D. Sidobre. Reactive planning
on a collaborative robot for industrial applications. In 2015 12th International Con-

ference on Informatics in Control, Automation and Robotics (ICINCO), volume 02,
pages 450–457, July 2015.

Author's
 vers

ion

Towards an autonomous airborne robotic agent 9

3. Tully Foote. tf: The transform library. In Technologies for Practical Robot Applications

(TePRA), 2013 IEEE International Conference on, Open-Source Software workshop,
pages 1–6, April 2013.

4. S. Garrido-Jurado, R. Mu noz Salinas, F.J. Madrid-Cuevas, and M.J. Maŕın-Jiménez.

Automatic generation and detection of highly reliable fiducial markers under occlusion.
Pattern Recognition, 47(6):2280 – 2292, 2014.

5. J. Goryca and R. C. Hill. Formal synthesis of supervisory control software for multiple

robot systems. In 2013 American Control Conference, pages 125–131, June 2013.
6. Phil Kim. Kalman Filter for Beginners. A-JIN publishing company, 2011.

7. K. L. Luna-Gallegos, E. R. Palacios-Hernandez, S. Hernandez-Mendez, and A. Marin-
Hernandez. A proposed software architecture for controlling a service robot. In

2015 IEEE International Autumn Meeting on Power, Electronics and Computing

(ROPEC), pages 1–6, Nov 2015.
8. L. Meier, D. Honegger, and M. Pollefeys. PX4: A node-based multithreaded open

source robotics framework for deeply embedded platforms. In Robotics and Automa-

tion (ICRA), 2015 IEEE International Conference on, may 2015.
9. Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,

Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating system. In

ICRA Workshop on Open Source Software, 2009.
10. M. Schöpfer, F. Schmidt, M. Pardowitz, and H. Ritter. Open source real-time control

software for the kuka light weight robot. In 2010 8th World Congress on Intelligent

Control and Automation, pages 444–449, July 2010.
11. F. Vanegas and F. Gonzalez. Uncertainty based online planning for uav target finding

in cluttered and gps-denied environments. In 2016 IEEE Aerospace Conference, pages
1–9, March 2016.

12. L. Yang, B. Xiao, Y. Zhou, Y. He, H. Zhang, and J. Han. A robust real-time vision

based gps-denied navigation system of uav. In 2016 IEEE International Conference on
Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pages

321–326, June 2016.

Author's
 vers

ion

	Towards an autonomous airborne robotic agent
	Daniel Soto-Guerrero1, José Gabriel Ramírez-Torres2 and Jean-Pierre Gazeau3
	Introduction
	Related work
	Hardware description
	Proposed approach and methodology
	Results
	Conclusions and future work
	References

