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Abstract. This paper aims to shed light on the determination of the true mobility for a 3-RPS-3-
SPR series-parallel manipulator, which was claimed to be six in [6] without any proof, and shown
to be five in [4] and [3] with an erroneous proof. Screw theory is used to derive the kinematic
Jacobian matrix and the twist system of the mechanism, leading to the determination of its local
mobility. I turns out that this local mobility is found to be six in several arbitrary configurations,
which indicates a full-cycle mobility equal to six. This full-cycle mobility is confirmed by calcu-
lating the Hilbert dimension of the ideal made up of the set of constraint equations. It is also shown
that the mobility drops to five in some particular configurations, referred to as impossible output
singularities.
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1 Introduction

A series-parallel manipulator (S-PM) is composed of parallel manipulators mounted
in series and has merits of both serial and parallel manipulators. The 3-RPS-3-SPR
S-PM is such a mechanism with the proximal module being composed of the 3-RPS
parallel mechanism and the distal module being composed of the 3-SPR PM. Hu
et al. [6] analyzed the workspace of this manipulator. Hu formulated the Jacobian
matrix for S-PMs as a function of Jacobians of the individual parallel modules [5].
In the former paper, it was assumed that the number of local dof of the 3-RPS-3-SPR
mechanism is equal to six, whereas Gallardoet al.found out that it is equal to five [4,
3]. As a matter of fact, it is not straightforward to find the local mobility of this S-PM
due to the third-order twist systems of each individual module. It is established that
the 3-RPS PM performs a translation and two non pure rotations about non fixed
axes, which induce two translational parasitic motions [7]. The 3-SPR PM also has
the same type of dof [12]. In addition, these mechanisms are known as zero-torsion
mechanisms. When they are mounted in series, the axis about which the torsional
motion is constrained, is different for a general configuration of the S-PM. Gallardo
et al. failed to consider this fact but only those special configurations in which the
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axes coincide resulting in a mobility equal to five. This paper aims at clarifying that
the full-cycle mobility of the 3-RPS-3-SPR S-PM is equal to six with the help of
screw theory and some algebraic geometry concepts. Although the considered S-
PM has double spherical joints and two sets of three coplanar revolute joint axes,
the proposed methodology to calculate the mobility of the manipulator at hand is
general and can be applied to any series-parallel manipulator.

The paper is organized as follows : The manipulator under study is described in
Section 2. The kinematic Jacobian matrix of a general S-PM with multiple modules
is expressed in vector form in Section 3. Section 4 presents some configurations of
the 3-RPS-3-SPR S-PM with the corresponding local mobility. Section 5 dealswith
the full-cycle mobility of the 3-RPS-3-SPR S-PM.

2 Manipulator under study

The architecture of the 3-RPS-3-SPR S-PM under study is shown in Fig. 1. It con-
sists of a proximal 3-RPS PM module and a distal 3-SPR PM module. The 3-RPS
PM is composed of three legs each containing a revolute, a prismatic and a spherical
joint mounted in series, while the legs of the 3-SPR PM have these lower pairs in
reverse order. Thus, the three equilateral triangular shaped platforms are the fixed
base, the coupler and the end effector, coloured brown, green and blue, respectively.
The vertices of these platforms are namedAi , Bi andCi , i = 0,1,2. Here after, the
subscript 0 corresponds to the fixed base, 1 to the coupler platform and 2 to the
end-effector. A coordinate frameFi is attached to each platform such that its origin
Oi lies at its circumcenter. The coordinate axes,xi points towards the vertexAi , yi is
parallel to the opposite sideBiCi and by the right hand rule,zi is normal to platform
plane. Besides, the circum-radius of thei-th platform is denoted ashi . pi andqi ,
i = 1, ...,6 are unit vectors along the prismatic joints whileui andvi , i = 1, ...,6 are
unit vectors along the revolute joint axes.

3 Kinematic modeling of series-parallel manipulators

Keeping in mind that the two parallel mechanisms are mounted in series, the end
effector twist (angular velocity vector of a body and linear velocity vector of a point
on the body) for the 3-RPS-3-SPR S-PM with respect to base can be represented as
follows:

0t2/0 =
0 tPROX

2/0 +0 tDIST
2/1 =⇒

[ 0ω2/0
0vO2/0

]

=

[

0ωPROX
2/0

0vPROX
O2/0

]

+

[

0ωDIST
2/1

0vDIST
O2/1

]

(1)

where0tPROX
2/0 is the end effector twist with respect to the base (2/0) due to the prox-

imal module motion and0tDIST
2/1 is the end effector twist with respect to the coupler
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Fig. 1: A 3-RPS-3-SPR series-parallel manipulator
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(2/1) due to the distal module motion. These twists are expressed in the base frame
F0, hence the left superscript. The terms on right hand side of Eq. (1) are not known,
but can be expressed in terms of the known twists using screw transformations. To
do so, the known twists are first noted down. If the proximal and distal modules are
considered individually, the twist of their respective moving platforms with respect
to their fixed base will be expressed as a function of the actuated joint velocities :

APROX
0tPROX

1/0 = BPROXρ̇13 =⇒

















(0rO1A1 ×
0 p1)

T 0pT
1

(0rO1B1 ×
0 p2)

T 0pT
2

(0rO1C1 ×
0 p3)

T 0pT
3

(0rO1A1 ×
0 u1)

T 0uT
1

(0rO1B1 ×
0 u2)

T 0uT
2

(0rO1C1 ×
0 u3)

T 0uT
3

















[

0ωPROX
1/0

0vPROX
O1/0

]

=

[

I3×3

03×3

]





ρ̇1

ρ̇2

ρ̇3





(2)

ADIST
1tDIST

2/1 = BDISTρ̇46 =⇒

















(1rO2A1 ×
1 q1)

T 1qT
1

(1rO2B1 ×
1 q2)

T 1qT
2

(1rO2C1 ×
1 q3)

T 1qT
3

(1rO2A1 ×
1 v1)

T 1vT
1

(1rO2B1 ×
1 v2)

T 1vT
2

(1rO2C1 ×
1 v3)

T 1vT
3

















[

1ωDIST
2/1

1vDIST
O2/1

]

=

[

I3×3

03×3

]





ρ̇4

ρ̇5

ρ̇6





(3)
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where,0tPROX
1/0 is the twist of the coupler with respect to the base expressed inF0

and1tDIST
2/1 is the twist of the end effector with respect to the coupler expressed in

F1. APROX andADIST are called forward Jacobian matrices and they incorporate the
actuation and constraint wrenches of the 3-RPS and 3-SPR PMs, respectively [9].
BPROX andBDIST are called inverse Jacobian matrices and they are the result of the
reciprocal product between wrenches of the mechanism and twists of the joints for
the 3-RPS and 3-SPR PMs, respectively.̇ρ13 = [ρ̇1, ρ̇2, ρ̇3]

T andρ̇46 = [ρ̇4, ρ̇5, ρ̇6]
T

are the prismatic joint velocities for the proximal and distal modules, respectively.
krPQ denotes the vector pointing from a pointP to pointQ expressed in frameFk.
Considering Eq. (1), the unknown twists0tPROX

2/0 and 0tDIST
2/1 can be expressed in

terms of the known twists0tPROX
1/0 and1tPROX

2/1 using the following screw transforma-
tion matrices [11, 2].

[

0ωPROX
2/0

0vPROX
O2/0

]

= 2Ad1

[

0ωPROX
1/0

0vPROX
O1/0

]

(4)

with 2Ad1 =

[

I3×3 03×3

−0r̂O1O2 I3×3

]

, 0r̂O1O2 =





0 −0zO1O2
0yO1O2

0zO1O2 0 −0xO1O2

−0yO1O2
0xO1O2 0





2Ad1 is called the adjoint matrix.0r̂O1O2 is the cross product matrix of vector
0rO1O2 = [0xO1O2,

0yO1O2,
0zO1O2], pointing from pointO1 to pointO2 expressed in

frameF0.
Similarly, for the distal module, the velocities1ωDIST

2/1 and1vDIST
O2/1 can be transformed

from frameF1 to F0 just by multiplying each of them by the rotation matrix0R1

from frameF0 to frameF1 :
[

0ωDIST
2/1

0vDIST
O2/1

]

= 0R1

[

1ωDIST
2/1

1vDIST
O2/1

]

with 0R1 =

[

0R1 I3×3

I3×3
0R1

]

(5)

0R1 is called the augmented rotation matrix between framesF0 andF1. Conse-
quently from Eqs. (4) and (5),

0t2/0 =
2Ad1

0tPROX
1/0 + 0R1

1tDIST
2/1 (6)

Note that Eq. (6) amounts to the twist equation derived in [5] whereas Gallardo
et al. add the twists of individual modules directly without considering the screw
transformations. It is noteworthy that Equation (11) in [4] is incorrect, so are any
further conclusions based on this equation. Following Eqs. (2) and (3), with the
assumption that the proximal and distal modules are not in a parallel singularity1 or
in other words, matricesAPROX andADIST are invertible,

1 Parallel singularity can be an actuation singularity, constraint singularity or a compound singu-
larity [13, 10, 1]
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0t2/0 =
2Ad1 A−1

PROXBPROXρ̇13+
0R1 A−1

DIST BDIST ρ̇46

=
[

2Ad1 A−1
PROXBPROX

0R1 A−1
DIST BDIST

]

[

ρ̇13

ρ̇46

]

= JS-PM

[

ρ̇13

ρ̇46

]

(7)

JS-PM is the kinematic Jacobian matrix of the 3-RPS-3-SPR S-PM under study. The
rank of this matrix provides the local mobility of the S-PM.

Equations (6), (7) and (8) can be extended to a series-parallel manipulator with
n number of parallel mechanisms, namedmodulesin this paper, in series as shown
in Fig. 2. Thus, the twist of the end effector with respect to the fixed base expressed
in frameF0 can be expressed as follows :

0tn/0 =
n

∑
i=1

0R(i−1)
nAdi

(i−1)tMi
i/(i−1) = J6×3n











ρ̇M1

ρ̇M2
...

ρ̇Mn











with 0Ri =

[

0Ri I3×3

I3×3
0Ri

]

, nAdi =

[

I3×3 03×3

−(i−1)r̂OiOn I3×3

]

and

J6×3n =
[

nAd1 A−1
M0

BM0
0R1

nAd2A−1
M1

BM1 ... 0Rn A−1
Mn

BMn

]

(8)

where,J6×3n is the 6×3n kinematic Jacobian matrix of then-module hybrid ma-
nipulator.Mi stands for thei-th module,AMi andBMi are the forward and inverse
Jacobian matrices ofMi of the series-parallel manipulator, respectively.ρ̇Mi is the
vector of the actuated prismatic joint rates for thei-th module.

4 Twist system of the 3-RPS-3-SPR S-PM

Each leg of the 3-RPS and 3-SPR parallel manipulators are composed of three joints,
but the order of the limb twist system is equal to five and hence there exist five
twists associated to each leg. Thus, the constraint wrench system of thei-th leg
reciprocal to the foregoing twists is spanned by a pure forceW i passing through the
spherical joint center and parallel to the revolute joint axis. Therefore, the constraint
wrench systems of the proximal and distal modules are spanned by three zero-pitch
wrenches, namely,

0
WPROX=

3
⊕

i=1

0
W

i
PROX= span

{[

0u1
0rO2A1 ×

0 u1

]

,

[

0u2
0rO2B1 ×

0 u2

]

,

[

0u3
0rO2C1 ×

0 u3

]}

1
WDIST =

3
⊕

i=1

1
W

i
DIST = span

{[

1v1
1rO2A1 ×

1 v1

]

,

[

1v2
1rO2B1 ×

1 v2

]

,

[

1v3
1rO2C1 ×

1 v3

]}

(9)
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Due to the serial arrangement of the parallel mechanisms, the constraint wrench
system of the S-PM is the intersection of the constraint wrench systems of each
module. Alternatively, the twist system of the S-PM is the direct sum (disjoint union)
of the twist systems of each module. Therefore, the nullspace of the 3× 6 matrix
containing the basis screws of0WPROX and 1WDIST leads to the screws that form
the basis of the twist system of each module,0TPROX = span{0ξ1,

0ξ2,
0ξ3} and

1TDIST = span{1ξ4,
1ξ5,

1ξ6}, respectively. The augmented rotation matrix derived
in Eq. (5) is exploited to ensure that all the screws are expressed in one frame (F0 in
this case). Therefore, the total twist system of the S-PM can be obtained as follows :

0
TS-PM= 0

TPROX

⊕

0
TDIST

= span{0ξ1,
0ξ2,

0ξ3,
0R1

1ξ4,
0R1

1ξ5,
0R1

1ξ6}
(10)

The order of the twist system0TS-PM yields the local mobility of the whole manip-
ulator.

Some general and singular configurations of the 3-RPS-3-SPR S-PM withh0 = 2,
h1 = 1 andh2 = 2 are considered and its mobility is listed based on the rank of the
Jacobian and the order of the twist system in Table 1. For general configurations
like 2 and 3, the mobility is found to be six. The mobility reduces only when some
singularities are encountered. For a special configuration when the three platform
planes are parallel to each other as shown in the first row of this table, the rotations
of the coupler generate translational motions of the end effector. Yet, the torsional
axes of both mechanisms coincide and hence, the mechanism cannot perform any
rotation about an axis of vertical direction leading to a mobility equal to five.

Moreover, a configuration in which any revolute joint axis in the end effector
is parallel to its corresponding axis in the fixed base results in a mobility lower
than six for the S-PM. For instance, for the 4th configuration in the table, there
exists a constraint forcef , parallel to the two parallel revolute joint axes resulting
in a five dof manipulator locally. Configurations 1 and 4 are the impossible output
singularities as identified by Zlatanovet al. [15]. It should be noted that if one
of the modules is in a parallel singularity, the motion of the moving-platform of
the manipulator becomes uncontrollable. A detailed singularity analysis of series-
parallel manipulators will be performed in a future work for a better understanding
of their behaviour in singular configurations.

5 Full-cycle mobility of the 3-RPS-3-SPR S-PM

The full cycle mobility can be obtained by calculating the Hilbert dimension of
the set of constraint equations of the mechanism [8]. Two Study transformation
matrices are considered :0X1 from F0 to F1 and1Y2 from F1 to F2 composed
of Study parametersxi andyi , i = 0,1, ...,7, respectively. Thus, the coordinates of
pointsA j , B j andCj , j = 0,1,2 and vectorsuk andvk, k= 1,2,3 can be represented
in F0 to yield sixteen constraint equations (six for the 3-RPS PM, six for the 3-SPR
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Number Study parameters and configuration
Rank of
JS-PM

Order of
0TS-PM

1

xi = (1 : 0 : 0 : 0 : 0 : 0 : 0 : 0.75)
yi = (1 : 0 : 0 : 0 : 0 : 0 : 0 : 0.8)

F
0

F
1

F
2

5 5

2

xi = (0.35 :−0.9 : 0.25 : 0 : 0.57 : 0.27 :−1.76 :−1.33)
yi = (1 : 0 : 0 : 0 : 0 : 0 : 0 :−0.8)

F
0

F
1

F
2

6 6

3

xi = (0.99 : 0 :−0.10 : 0 : 0 : 0.21 : 0 : 1.92)
yi = (−0.79 :−0.59 : 0.16 : 0 :−0.16 :−0.13 :−1.25 :−2.04)

F
0

F
1

F
2

6 6

4

xi = (0.99 : 0 :−0.10 : 0 : 0 : 0.21 : 0 : 1.92)
yi = (−0.39 : 0 : 0.92 : 0 : 0 :−1.88 : 0 : 0.12)

F
0

F
1

F
2

f 5 5

Table 1: Mobility of the 3-RPS-3-SPR S-PM in different configurations
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PM, Study quadric and normalization equations for each transformations). It was
established that the 3-RPS and the 3-SPR parallel mechanisms have two operation
modes each, characterized byx0 = 0,x3 = 0 andy0 = 0,y3 = 0, respectively [14, 12].
For the S-PM, four ideals of the constraint equations are considered :K1, when
x0 = y0 = 0,K2, whenx3 = y0 = 0,K3, whenx0 = y3 = 0 andK4, whenx3 = y3 = 0.
The Hilbert dimension of these ideals over the ringC[h0,h1,h2] is found to be six1

and hence the global mobility of the 3-RPS-3-SPR S-PM.

dimKi = 6, i = 1,2,3,4. (11)

6 Conclusions and future work

In this paper, the full-cycle mobility of a 3-RPS-3-SPR PM was elucidated to be
six. The kinematic Jacobian matrix of the series-parallel manipulator was calcu-
lated with the help of screw theory and the result was extended ton-number of
modules. Moreover, the methodology for the determination of the twist system of
series-parallel manipulators was explained. The rank of the Jacobian matrix or the
order of the twist system gives the local mobility of the S-PM. Global mobility was
calculated as the Hilbert dimension of the ideal of the set of constraint equations.
In the future, we intend to solve the inverse and direct kinematics using algebraic
geometry concepts and to enlist all possible singularities of series-parallel mecha-
nisms. Additionally, it is challenging to considern-modules (n> 2) and to work on
the trajectory planning of such manipulators as the number of output parameters is
equal to six and lower than the number of actuated joints, which is equal to 3n.
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Nantes and the French National Research Agency (ANR project number: ANR-14-CE34-0008-
01).
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