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Abstract. Higher-order derivatives of kinematic mappings give insight into the motiSgiacha T-
istics of complex mechanisms. Screw theory and its associated Lie group th used
to find these derivatives of loop closure equations up to an arbitrary order, as not
been extended to the higher-order derivatives of finite motion as given versg/or forward
kinematic model of closed loop mechanisms. In this paper, a recursive
sisting solely of matrix multiplications, which is capable of giving th

=

auléylor approximation (up to
shows a good approximation in a
large part of workspace around the evaluation point.
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1 Introduction

motion of spatial kinematics can be obtained with
screw theory. This theory gives the kinematic relations
1es of bodies (twists) and general constraint forces (con-
on a system. This instantaneous analysis is only available in

the differentfa
between t epe
straint wren ) act

en loop chains is given by Brockett’s products of exponents (POE)[1].
s of the products of exponential matrices of the instantaneous screw axes.
tives up to an arbitrary order of loop closure equations can be found by taking
brackets of instantaneous screw axes, which can be expressed as matrix multi-
plications of twists[2, 3]. This paves the way for an algorithmic differentiation-free
derivatives of the loop closure equations [4].

However, higher-order derivatives and approximations of the finite motion of
these closed loop mechanisms were not yet found. These higher-order derivatives
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of finite motion can be used for finding conditions for invariant properties of kine-
matics and dynamics such as required for balancing, synthesis and analysis of rigid
body motions. Moreover, such an approximation is advantageous since closed form
kinematic mappings are not always available for the more complex mechanisms.
Unfortunately, processing these higher-order, multivariate derivatives require elab-
orate bookkeeping, as can be seen in the implementation of the higher-order chain
rule, the Faa di Bruno’s rule[5].

In this paper a simplified representation of the higher-order derivatives of the
screw systems is presented which has a structure similar to the Brockett’s POE.
With Vetters method for managing higher order matrix derivatives [6] this enables
us to obtain a recursive, differentiation-free algorithm for higher-order derivativ
of the solution to the closure equations. Using the resulting higher-order clg
Jacobians, a Taylor approximation of the closed loop kinematics is performgd.
steps taken are exemplified with an approximation of the inverse ki matid
of a 5-bar mechanism.

Before we introduce the higher-order derivatives of the loop gloSure ion,
the screw algebra theory is revisited and applied to an open chai eq on this a
simplified representation of higher-order derivatives of an o chain s« presented
(2.2). After this the loop closure equations and the matrj ives are revisited
(2.3-2.4). Using these rules finally the algorithm for d€terglining’the higher-order
derivatives and its Taylor expansion is presented (2.3¢ an@fits iggplementation shown
for a 5-bar mechanism (2.6).

2 Method \ %

2.1 Concepts and notati

€

In the notation of screw
ciated to eachygigid
reference fram
from the

(R) and a tr. tion
appended@wi

ctor (0). In the homogeneous representation the a‘-vector is

HI — [’f)’ "lf] - [[“’éX] ﬂ H = [ (1)
he time derivative of the transformation matrix is given by the twist (tf-” ), th gen-
lized velocity, of body i with respect to body j expressed in frame k. For clarity
reasons the subscript and second superscript are omitted when possible. The twist is
a vector containing the angular (@) and translational (v) velocity. The [(D ><] denotes
the skew symmetric matrix form of @. The twist’s frame of expression changes with
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the adjoint transformation matrices here denoted with Ad (H l’ ).

R 0

j_ AVl AR : oY
t/ = Ad(H!)t Ad(H!) o/ X|R R

@)

The time derivative of adjoint transformation matrix is given in terms of instanta-
neous transformation matrix ad (t).

d

& (wa(ar)) = aale)ratl)  aatr) = [ 1] [woxﬂ

This matrix itself can be expressed in an other reference frame according to a ed
transform:

ad(t) = ad (Ad(H!)1') = Ad (H])ad (') Ad (H}) @
Using these twists, a concise formulation for the forward kinemati wf an
open chain is available in the form of Brockett’s product of expon%

Ad(H)(q) HAd (H (1)) He“d

i=

In here, the instantaneous screw vector i?, denoted”With ¥ specifies the amount
of twist generated by the instantaneous moti jdint 7, and is therefore a pure
geometric entity. As this screw vector is always wi spect to the previous body
in the chain, the second superscript is gmaitted. The instantaneous screw vector of
lower kinematic pairs are constdfg w essed in the connecting frames e.q.

d (2i-1\ _ d (3) _
4 (i) =4 (i) =0

2.2 Derivatives of @ ems (open chain)

r-order partial derivatives can be found using the trans-
ipus section. A chain of transformations can be decomposed

do(Ad(H) = Ad(HY) - (aa(H ) Ad(H)) ©

=Ad(H].\)ad(i; ") Ad(H}")Ad (H},) ™
= ad (1)) Ad(HY) ®)
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For the second-order, such a concise representation also exists. For the consec-
utive derivative with respect to joint j there exist two possibilities, either it is after
body i in the chain (case 1.) or before i in the chain (case 2).

1. Case 1. (i < j) In the case that joint j is higher in the chain than i, the twist is
unaffected (% (ad (i?)) = 0). Therefore, the second partial derivative becomes:
J

d d 0 ~0 ~0 0
dq; dq; (Ad(H,)) = ad (t;)ad (t;)Ad (H,) ©)
2. Case 2. (i > j) In the case that j is below i in the chain we use the nested tran
form property to split the chain into a dependent and independent part. It may be

verified that (ad (AJ )Ad (H J )) = 0. Therefore:

o
() = (Ad (HY)ad (i) ad (H] (10)
dqj dg " dg;
d 0 J
d (Ad(H?}))ad(t] (11)

Using (8) a matrix chain can be found and collected using the nested trans-

form:

d d

(Ad(HY)) = ad(t; JAd (HY) (12)
dQJ d%

Leaves us with an expression sifjlar ith the difference that sequence of
multiplication is swapped. Th1s follows/from the symmetry (commutativity)
property of mixed partial derivatiyes: aq dg; Ad (H 0)) dq dq (Ad (H O))

and (12) gives us the geometrlcal higher-order
ied in multi-index !, which is ordered from

A consecutive application of
partial derivatives for an u
the base to the end-effec

Hy)) = IEI((ad(f?)W"))Ad(HS) (13)

i=1

is simiblgh to that of [3], with the difference that the index ranges to dis-
en the sequence of derivatives are taken into account by the ordering
commutative property of mixed partial derivatives it follows that for
uence of differentiation the same results are obtained. Furthermore, it
en that (13) resembles the structure of the Brockett’s formula (5) in the
sense’that the matrix multiplications follow the physical ordering of the chain.

! D,(ck) (A) denotes the matrix collection of all k-th order partial derivatives of A with respect to
X. D,(‘a) (A) denotes the mixed partial derivative with respect to the elements of x. A sequence of
derivatives to each x; with an order of the corresponding @; value. This assumes that the mixed
partial derivative are commutative.
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2.3 Loop closure equations

The open-loop chain derivatives (13) can be used for closed loops, as a closed loop
can be seen as a connection of multiple open-loops. E.g., a simple loop can be seen
as a open chain of with the last link fixed to the base. The loop closure equation
(f) states how the members of the loop are constrained. It can be written in terms
of independent (#) and dependent coordinates (v), also termed input and output,
respectively. The total set of coordinates we call s” = [u" v']. The solution to this
problem is denoted by ¢, which can be the inverse, forward, or any other kinematic
model giving an exact relation between independent and dependent coordinates.

f(u,v)=0 v=c(u)

The solution (c) to the loop closure is usually not available for comple,
Therefore, we are looking for a Taylor expansion using higher-order
the constraint formulation using the open loop derivatives of sect#n*2.2.

with the first order. This reads:
0=D,(f)=D,(f)u+D,(f)v="Ui &, (15)
kingk v

This gives rise to the Jacobians (C) and (K), respectiye vand w to i.

v=-V WWi=Ciu=D,(c)u m it (16)
We already have seen that closurgequagfonsgan be written as a function of transfor-
mation matrices of the open chai&)e e, fhe higher-order partial derivatives of

D§a> (U) and D§a> (V) are avai
the higher-order closure Jacobia

. NowWe are looking for a method of writing
k
= D,(, ) (¢)

2.4 Multivar 1x derivatives using Kronecker product
The higher- pargal derivatives of matrices can be managed with the use of the
Kronec 6]. Here the partial derivative version of the product rule, the

e inverse matrix derivative are given.

o Pro le of A(x) € R™™ B(x) € R™*, forx € R", and I is an identity matrix:
D,(AB) = [D,(a)B ... D, (a.)B| +AD,(B) (17)
=D,(A)(B®1,)+AD,(B) (18)

e Chain rule:
D, (A(b(c))) = Dy (A) (In® D, (b)) (19)

e Derivative of matrix inversion:
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-1\ __ -1 -1
D (A")=-A"'D,(4) (A" ®1,) (20)

Recursive applications of these rules allow the extension of these derivatives to
higher orders.

2.5 Higher-order closure Jacobians and Taylor approximation

Using the rules of the previous section, the second-order derivatives (Hessian) of
the solution to the constraint equations are found. This is done by consecutive a
plication of the chain rule, the product rule, and the inverse matrix derivative to the

(22)

Jacobian (16) .
o
D,(C))=Co=—[D, (VU -V 'D U)|I®K
=-V7 D, (V) (Ci&I)+D,(U)]|(I®
After reordering and combination of the Kronecker productsﬂ, a concise
~1
2

formulation of the Hessian matrix.

can
C:=-V ' [Dy(V) D, (U)] (K@K} G, (23)

A further derivation is applied to show that a sj cture as the Hessian can be
found for the 3rd derivative. For higher orders this ss can be repeated until the
desired order is reached, giving us a recyssjve algorithm.

C,®K
D,(C)=-V ' [Dy( 2] |Go®K | =-V 'F3G; (24
Du (GZ)
This algorithm consist o tepS: 1) The higher-order derivatives of V, and U

are filled into, the pr
c open-loop equivalent. 2) The G matrix is filled with
precursoryalowe Its. 3) The combination of the three matrices give the
vative of the closure Jacobian (Cy). The derivatives of the Gy,

rivatives of the closure Jacobians up to the k-th order. We assume that
v gyaluation point the closure constraint is satisfied, and that s = 0 such that the

aylof” series becomes a Maclaurin series. The input for the independent variables
is,given as a power (denoted with the ®/) of Kronecker products [6]:

1 1 < R
v(u) =0+Ciu+ 2—!Cz(u®u)+§C3(u®u®u)+... ~ ;EC,-u(>9 (25)
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2.6 Approximate solution of a 5-bar mechanism

The higher-order derivatives and Taylor expansion is applied to approximate the
inverse kinematic model of a 5-bar mechanism. We choose to describe the 5-bar as
a connection of two open chains (a, and b) with joints g;, g2 and g3, g4 respectively.
The connection point is the end-effector x°. This point has to satisfy the constraint
equation from both sides (a, b) calculated using the connection point in the local
frame (x> and x*). The closure equation can be written as:

0 0 2 0 0 4 x0 —x
x, = H3(q,)x x, = Hy(q34)x f:0= X0 — 0 (2
Using the end-effector coordinates (# = x°) as input and the 4 joint angl

lq1 ... q4]T) as output, the first-order partial derivatives of the closuse e
become:

~0 0 120
D, (1) =v =" b,n-v=|Frlule @7)
I 0 0
The higher-order partial derivatives can be found by e, twist derivatives of

2.2 and recursive equations of 2.5.

3 Results

The Taylor approximation, up t
end-effector (x°) forming 4 tr.
an approximation of the comesp

For evaluation of the qug %

approximation from
trajectories.

The result of th§yTayloWapproximation (Figure 1) shows that in a large portion of

the workspag&arou e evaluation point (x° = 0) the approximation converges to

i ect estimation of finite joint displacement. However, further

from the ev@luation point the accuracy is less as can be seen in the insert.

e 5-t der, is done for 200 positions of the
ories through the workspace with the aim to find
ipe joint displacement of the joints (g1 ...qa4).
he Taylor approximation, the end-effector position
and right (xg) side are plotted together with input

ussion and conclusion

or the calculation of higher-order partial derivatives, this method uses Kronecker
products of matrices, which can lead to very large matrices for larger systems and
higher orders. This possibly poses practical limits on applicability of this procedure.
Sparse matrices and the aggregation of mixed partial derivatives can be used to mit-
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Fig. 1 The Taylor approximation of the IKM of a 5-bar (solid black) aroundie jon/point at
x% = [0,0] up to the 5th order for 4 different trajectories. It shows the left oloredl) and right
(dashed colored) estimation of end-effector trajectory (dashed black) inse OWS conver-
gence for higher-order estimation far from the evaluation point.

igate the memory usage and reduce the numbep of fatriX operations. It is worth
investigating what determines the validity of t approximations in kinemat-
ics, such as the radius of convergence and the closeness to singularities.

In this paper, a recursive method wagfrésented which gives the higher-order par-
tial derivatives of closure Jacobian$of closed loop mechanisms consisting
of lower kinematic pairs. This od regd’on a simplified representation of the
higher-order twist derivatives, presented here, and the matrix derivatives of Vet-
ter [6]. This enabled the Ta imation of a kinematic mapping over a given
trajectory, as exemplified echanism.
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