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Abstract. In the velocity analysis of mechanisms the instantaneous screw axes he -
sponding axodes play an important role. The instantaneous screw axis is comp city
operator, this is the skew-symmetric matrix AA, where A is the transformati om this
operator the Pliicker coordinates of the instantaneous screw axis are kn Study pa-

rameters of a one parametric motion are given a direct computation
axis would be more convenient. Without computing A and its derivagie
way of computing the instantaneous screw axis directly from the $ para
parametric motion.

erization of the one
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1 Introduction

afid the moving frame of one parametric motions. Let
x 4 matrix description of such a one parametric mo-

A(t) be the ho
tion in 3. matg
skew-symmeétig4 x 4 matrix

o 0 0 O

Q—AA= [T O oo (1)
Ty, 0, 0 —o
T, —0y, & 0

e matrix representation in Eq. (1) is often rearranged to the vector notation, the
so-called velocity screw v = (®,, @y, @;, Ty, Ty, T;)7, as stated by Bottema and Roth
[2] or Husty et al. [4]. Its entries determine the linear and angular velocities.

In the last centuries Study parameters, a point model for Euclidean displace-
ments, were of great benefit in the investigation of kinematic properties of mech-
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anisms [5]. In this model one parameter motions are curves in the so-called Study
quadric 82, which carries all points in the kinematic image space that correspond to
Euclidean displacements. Recently it turned out that Sé can be neglected for some
problems [6], for example for motion design in P”.

To the best of the authors knowledge until now there exists no such velocity
operator in the kinematic image space, not for curves on nor off the Study quadric.
Therefore one has to map the curve from P’ back to the matrix description in E3
and compute the velocity screw and the axodes there.

The scope of this paper is to investigate an operator that acts on the Study pa-
rameters directly to compute the linear and angular velocities and furthermore the
instantaneous screw axes. These facts are shown for some examples.

The paper is organized as follows: In Sec. 2 a brief introduction to the used nota-
tions and theories will be stated, which will be applied in Sec. 2.1 for curv ¢
Study quadric and Sec. 2.2 for curves not included in the Study qu
Sec. 3 will show examples, such as the well-known RPRP and the B

anism, and finally for a motion given by a line not included in t drlc
which corresponds to a vertical Darboux motion. &

Let the coordinates in kinematic image space noted by the homogeneous

coordinates (x,y)T, with x = (xg,x1,%2,x3)T and y = (yo,¥1,¥2,y3)T. For the fol-

lowing computations (X,y)7 is d% olurnn vector. Since [6] it is known that
e

2 Velocity Operator in Kinematic Image

curves in kinematic image space C Euclidean motions in the task space

IE3, nevertheless if they are in the@fudy q ¢, which can be written as
XpYo +Xx1y1 + =0 < ((xy =x"-y=0 )
or off the Study quadric.

=i, q(1))T, where p(t) = (po(7), ..., p3(1))T and (1) =

(qo(t),...,q3(t scribe a curve (or a one parameter motion) in P’. For
brevity the ¢ is avoided in the notation and m denotes the derivative with
respect to 7. m., = (0,p)T lies in the exceptional generator of the Study
quadric i ree space represented by xo = x; =x2 = x3 = 0 and is connected

curve via the fibrization in [6]. A fiber through an arbitrary point
utside the exceptional generator is defined by the straight line

(X0 :x1:x2 X3 1 y0+1x0 : y1 H1x1 Y2 +1x2 1 y3 +1x3), 3)

ere t is the parameter of the line. The intersection points with the Study quadric
correspond to the parameter values f; = o and 1, = — (x,y) / (x,x) Note that the
point of intersection with t = oo lies in the exceptional generator.

For the following inspections we use normalized coordinates, which means that
x§+x} +x3 +x3 = 1, which is no loss of generality.
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2.1 Curves in the Study Quadric

At first we restrict the curve m = (p,q)T to be contained in the Study quadric. Then
it is straight forward to compute the operator X by collecting the coefficients of the
derivatives in the vectorial version of the velocity screw AA. It can be written as

-p1 po —p3 p2o 0 0 0O O

-p2 p3 ppo —p10 0 0 O
y_|=p3—p2p po 0 0 0 0 _(P 0

—D2

91 —q0 93 —q2 p1 —Po P3 - QP)
P2 —q3 —q0 q1 p2 —p3 —po P
3 9@ —q1 —q0 P3 P2 —P1 —Po Q

v=2X-m= (wmwy wZaTX7TyaTZ

the velocity screw. Using the notation v., = (0,0,0, ®,, ®,, ®,)T t ordi-
nates of the instantaneous screw axis can be written as %’

and this yields via

= (6)
where the coefficient (p,q) / (P, p) is the instantaneQus pit€l, which is zero for in-
stantaneous rotations. Comblnlng Egs. (4), (5 1e1ds

|
S;r=®-m —P - . @)
p.p

Equation (7) yields an operatogfaghhich computes the Pliicker coordinates of the in-

stantaneous screw axes in the fix e using the motion m and its derivative m,

as long as m lies in the % adfic. The matrix @ is a 6 x 8 matrix. Geometri-
0 d

cally Sy are the Pliicker es of the fixed axode. Note that S; really represent
Pliicker coo e they fulfill the Pliicker relation. Using the embed-
ding of thoge lin s of P in the kinematic image space P’ like described
in [9] the ga

nsider m* = (p*,q*)7 to be a curve in P’ ¢ 52, i.e. (p*,q*) # 0. The deriva-
tive of m* with respect to ¢ is denoted by m*. Because of the fibrization shown in
g. (3) the curve m* and its derivative m* are pulled onto Sé and its tangent space,
respectively, by

m = IT-m*, m=IT-m* (8)

where
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Iy 04

= L 9

<—<p Q) s I4> ©)

L 04
I = . 10
((p*,q*>(2p*'p”14)p*-q*T I4p*-P*T> (10)

Note, that IT = IT = Ig if m* € S%. This can be computed by using the equation
(p*,q*) + (p*,q*) = 0, which is the derivative of (p*,q*).

To compute the instantaneous screw axes S; of the motion given by m*, Eq. (7)
has to be applied to the projected curve m and the projected derivative m computed
in Eq. (8).

[
3 Examples O

To illustrate this process, the fixed and the moving axode will be ¢ for some

one parametric motions. %

and

3.1 The RPRP Mechanism

The RPRP is a single-loop four bar mechanism wit revolute (R) and two pris-
matic (P) joints (see for example [3]). T otion of the coupler [7] is given by

1
m = (0,-61,6,0,0,v/3(129¢ 5V3NGBr (120 +5V3), - 127+ 1)) (1)

can use the theory in Sed ompute

where A = (—2++/3)/ % + 1), which is a curve in S2. Therefore we

0 0 1 0000

0 0 t 0000

1 — 0 0000

0 222 -L35 —ro0-1| {2
262 +2 0 §V36 100t

-2 V36 —1V36 0 0170

t = (=123 +5v/3) and &, = (24¢> + 12 + 5t1/3). Then the instantaneous
screw axis, and therefore the Pliicker coordinates of the fixed axode are

S;=®-m=(0,0,1,4r,2(:> — 1),0)T. (13)

The moving axode can be computed via the inverse transformation and can be
written as
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(00,2 + 1,4(£ — s +15> +5),2(t%7 = 3> +4ts —s* —1),0)T  (14)

where ¢ is the parameter of the motion and s is the parameter on the surface. Fig. 1
shows the fixed axode and some discrete copies of the moving axode (in the base
frame) during the motion.

Fig. 1 Fixed axode (red) and some\cret%f the moving axode (blue) of the RPRP

3.2 Bennett Mecha

Despite thegspheri@al or p¥anar four-bar, the Bennett mechanism is the only spatial
single-loop ed ar with revolute joints only [1]. The motion of the coupler
by

[7]is giv,
0
(2—V2)t
V2/2(t —2v2+3)
| —1/2(vV3vV2—-2v3-2V2+2) (> + 1)

15
AVEZ+1 (1)

0
3/2(vV3vV2—2V/3-2v2+2)t
3/4(3V3vV2 =43 —4V2+6) (1> +2v/2+3)
—3/42—-V2)(>+1)
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with A = \/(t2 +1)(3v/3v2 —4y/3 —-5v2+8) —63/2+8 and the instantaneous
screw axis is

—8(V2+V3)t
—~4(V2+V3)(” - 1)
—6/8((V3+1)2=22)((vV2—1)2 =)t
=3/8((V3+1)* =22)((V2—1)* = *)(* — 1)
3/8((V3+1)2 =22 (V3V2—V3—V2+2) (12 +1)?

with § = V3v212 +1* — /312 + V212 = 2/3V2 — 12 +3/3 - 42+ 6.
Although computation with the operator @ is quite simple the expressiong

in this simple example, are too complicated to be displayed here. The‘orres

axodes are plotted in Fig. 2.

Fig. 2 Fixed e I e discrete Fig. 3 Some point paths during the motion
copies of the moviiglaxode e) of the Ben- given by m*

nett &

traight line in P’
an example for a curve not included in the Study quadric, consider the connecting
ine m = a; V ap of the two arbitrarily chosen points a; = (5,6,7,8,13,7,9,2)T and

ay=1(9,3,1,7,13,5,13,17)7. A parameterization of this line is given by

1
m*(¢) = Z(—4t+9,3t+3,6t+ Lt +7,13,2t +5,—4t + 13, - 15t +17)7, (17)
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with A = v/62¢2 —28¢ + 140.

As an example of a curve not contained in Sg the theory developed in Sec. 2.2 is
applied. At first the line m* has to be pulled to the Study Quadric using IT of Eq. (9).

This yields
(9—41)/A
3(r+1)/A
(6r+1)/A
(t+7)/A
M= 1 (13263 — 92312 — 10971 4 556) /A3 (18)
(2231 + 48812 — 517t — 92) /A3
—(50¢% — 122112 + 2463t — 1556) /A*
— (89713 — 1750¢ 42525t — 532) / A®
with A = /6212 — 28t + 140. o Q
In the second step m* has to be mapped to the tangent space of SAsin

Eq. (10) to compute
—2(251t4217)/A3
—6(38t —77)/A3

—2(73t —427) /A3
o —14(32t—17) /A3
M= 22584113 + 102195¢2 — 18860 — )/A% | 9
—2(19811#3 — 754681% — 7t % 38122) /A3
—18(408913 — 14851¢> — 9997 M5526) /A3

—2(35413¢3 + 4407 177849 + 165578) /A3

As shown in [6] the resulting moh ms a vertical Darboux motion, i.e. a rotation

around a fixed axis combined witifharmotC oscillation along the same axis. In this
motion all point paths are elli s shown in Fig. 3 for some points. Therefore the
fixed and moving axodes b&Wiked lines in this example. They can be written

,36764, —2560,—70279, 102617)T. (20)

ws how to compute the instantaneous screw axis directly from curves
quadric. Furthermore it was shown how to pull a curve and its deriva-
the Study quadric and its tangent space, respectively, via a fibrization of
the kinematic image space.
A developed operator in this publication can be used to directly compute the
axodes of a given motion in P’.

The benefit of this work is that all the operators can be used on normalized Study
parameters and there is no need to use the matrix representation of Euclidean dis-
placements.
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