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1 Introduction

A linkage is a mechanis! % generates a complex motion. The synthesis of a
linkage mean§detosini s#beometric structure such that it generates a prede-
termined motio ry and satisfies some structural restrictions. Fulfilling
the previo uirgments puts a lot of limitations on the linkage. This gave rise to
optimal synthegi aims at approximating these requirements. Some of the op-
s used in optimal synthesis of linkages are: interior-point meth-

onstraint methods [11] , genetic algorithms [3] and evolution [12].

ing the factorization of motion polynomials [4] synthesis process. We demon-
at it is particularly well-suited for evolution techniques because it allows
to construct (overconstrained) linkages directly from a given approximated rational
otion.

The factorization of motion polynomials is a process that generates a linkage
which performs a one parametric motion (the functions of the joint angles share the
same parameter). This motion must be defined by a rational curve in the kinematic
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image space. The motion curve is constructed by starting from a set of target points
in this space that resemble the poses needed to be achieved by the linkage. Using
curve evolution methods [1], the initial motion curve will converge and approximate
the specified poses.

For the evolution process to work for such curves the group of Euclidean dis-
placements SE(3) is embedded in 12-dimensional affine space R'2. A metric be-
tween two motions is used by equipping the end effector of the linkage with a ho-
mogeneous mass distribution or a set of “feature points” whose barycenter is the tool
center point (TCP) [8]. The metric will measure the distance (in Euclidean sense)
between the two resulting vectors of the feature points displaced by the two motions.

The paper is structured as follows Section 2 explains the Euclidean metric j
the affine space R'? and offers a quick glimpse into motion factorization and gue
constrained linkage construction, Section 3 presents the evolutionary desigg
motion curve. Section 4 follows up with an example and in Section 5*some
sions are drawn.

2 Preliminaries & :

The group of special Euclidean displacements SE(3)W€pregénts rigid body dis-
placements and is used to map a point p to a sitiofl p’ in Euclidean three-
dimensional space:

y:R* >R, p'=Ap+a (1)

The matrix A is a 3 x 3 special OXg al iX representing an element of the ro-
tation group SO(3) and the vector &is d tranglation vector. Because displacements
incorporate multiple distance c ts defifing a metric between them can be prob-
lematic. In the past the conce s addressed for example by [10] but due to the
isPaper we have chosen the method proven in mo-
embeds SE(3) in a 12-dimensional affine space

tion design by [6]. This
by mapping the entz [
metric the grip

is defined r product (o, B) := Y (a(fp;), B(fp;)) for any a, B € SE(3).
The corresponghi ed distance is || — B]|* = (a — B, & — B). It is well-known
[8] that me nly depends on the barycenter and the inertia tensor of the set

ts and is capable of representing more general mass distributions in a

actorization is a method developed by Hegediis, Schicho and Schrocker
d can be used to synthesize linkages with one degree of freedom joints
whose end link motion is defined by a rational curve on Study’s quadric. By com-
ming multiple factorizations overconstrained linkages can be constructed as was
demonstrated in [4].

For further understanding of the synthesis process a quick introduction to the
kinematic image space and Study’s quadric is necessary. Study’s kinematic mapping
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maps the group SE(3) to a quadric in seven dimensional projective space P’ with
the equation xoyo + x1y1 +x2y2 +x3y3 = 0 called Study’s quadric and denoted by
.. A more detailed explanation is given by Husty and Schrocker in [9]. The points
of P7 are represented by the skew ring of dual quaternions DH, denoted as g =
xo +x1i+x2§ + 23k + €(yo +y1i+ y2j + y3k) with the multiplication properties:

e2=0, ==K =ijk=—1, ei=ie, ej=je, ek=Kke.

The conjugate of a dual quaternion is given by replacing i, j and k with —i, —j, and
—k, respectively. A dual quaternion on . is characterized by ¢g € R.

The motion factorization algorithm of [4] starts with a rational curve of degree
on . given by the polynomial P(t) = cot" + c1t"~ ' +---+ ¢, where ¢, € DH a
PP € R[t]. Generically (only generic cases are relevant for evolution based g
sis), it can be factored as P(¢t) = (t —hy) - ...- (t — h,). The linear fa@ors ¢
computed by polynomial division over the dual quaternions using the
reducible factors M; of PP = MM, - ...-M, one at a time in the fo,
By polynomial division, polynomials P,_1, R are attained with P,
R = rit + . In [4] it was proven that the unique dual quate
of R gives the rightmost factor # — &, in a possible factorizat{o P,.
remaining linear factors, another quadratic factor M; i en the process is
repeated with P,_ instead of P,.

Each of the n linear factors represent a revolute la t around an axis and
by consecutive multiplication to the right they a \inkage whose leftmost factor
is the fixed joint and the rightmost factor is the distal'J@int. There are, in general, n!
different possibilitys for the selection o of the M,’s. This leads to the synthesis
of n! different open chains that pSfor e motion. As it was shown in [4] an
overconstrained linkage can be copsttucted by/Combining multiple kinematic chains
to form a closed structure.

3 Curve eypluti y’s quadric

Curve evo is'@awidely used procedure in image processing and design and of
late is also in mJotion generation [7]. Our evolutionary approach is based on
curve fi to a\88t of data points driven by the normal velocity of the curve in the
direcfion o target points [2]. By mapping the desired poses to .¥ is obtained
the set et points TP,, which need to be approximated by a rational curve C

contained in .7, that is, satisfying CC € R[t]. The validity of this condition
ed throughout the evolution process by writing C in factorized form C =
-+ (t — hy,) where each linear factor represents a rotation about an axis in
ace. The linear factors are defined in (2) where the Pliicker coordinates of the
revolute axes are (dj, m;):

_ t—ho —d; — emy

t—h; = (2)
[di
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By fluctuating the shape parameters Spy,...,Sp; (coefficients of C) in time a
family of curves Cj is obtained such that the target points TPy, ..., TP,, are optimally
approximated. The moving velocity of a curve point C(¢;) is given by the amount of
change in time of the shape parameters Sp;:

k. oC(t;
Z 8Sp 3)

We are interested in moving the points on C(¢) which are closest to the target points.
These points are computed as the foot-normals between the TP,, and C(r) using the
Euclidean structure given by the inner product defined in Section 2:

(TP, —C(t),C'(£)) =0~ {tm1s-- s tmi },

tm = argmin(||TP,, — C(t)||* :i € {1,...,1}).

Note that the involved computations essentially boils down to findghg the zc¥S of a
univariate polynomials because the motion is given by a poly . This is one
of the advantages inherent to our approach.
The foot-points FP,, = C(t,,) are computed using rejati

the ideal velocity vector d of the foot-points should be — EPs;. Comparing co-
efficients of both vectors in an orthonormal basis gith€gespeft to the given scalar
product) and using (3) results in an overconstraihed Yystem of linear equations for
Sp, that can be solved in least square sense. The ape parameters of the curve
are computed as: Sp; = Sp; + ASp; where A is a scaling parameter used such that
the curve doesn’t overshoot. In tigne asghe distance between the curve C(r) and the
target points TP,, decreases, the & c@nverge to a local minimum.

nd (5) and so

4 Numeric Exampl

s the identity. A cubic curve C(¢) = (t —x)(t —y)(t — z)
the target poses. We limit ourselves to polynomials of de-
end goal of the example is to construct a 6R overconstrained

i+ x2j+x3k — 8(()C2)C7 —x3x6)i + ()C3X5 —X1X7)j + (x1x6 —)CQ)Cs)k)

\/ x% + x% + x%

(6)
d similar for r —y and t — z, resulting in a total of 21 shape parameters. The special
shape of (6) is crucial. It ensures validity of the Study condition for each factor and
hence also for C(r) throughout the whole evolution process. The linear factors are
normalized to avoid numeric fluctuation of C(¢) without any geometric change.
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Table 1 Target Poses
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A suitable initial guess for the shape parameter can fou interpolating four

poses [5] or, as we did in our example, by assigning ran, al the shape pa-
rameters. Several attempts might be necessary in ordgr surg good convergence.

lo imum has been ob-
to be small enough in order
to compensate for large amount of changes Sp; in t pe parameters. For the evo-
lution to have a good flow, we found A :zamax{10||Sp,||=', 1} to be a good choice.
With this initial setup we arrivexh C tation of the foot points on C(z) as
described in the previous section. Frem igh (4) we obtain an equation of degree
at most 10. Its zeros are found ericallf¥’and we can use (5) to find the param-
eter value of the closest point? e, we also impose some constraints on the foot
o tonsu at the poses are visited in successive order.
; @ al"curve is evolved, two target points are chosen

NExt interval constraints are applied to the remaining
spective parameter values f,, are in successive order. If

Once the evolution runs smoothly little effect on

change with the corresponding amount and the process is repeated again
starting with the foot point computation. The final results are presented in Table 2
ith a three decimal digit precision. The evolution process itself is visualized in
igure 1. The target poses are labelled from 1 to 10, the angles and distances to the
respective target poses are given in Table 3. It can be seen that the distances are quite
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good while the orientation seems to be hard to match. The reasons for this are under
investigation. We conjecture an inappropriate distribution of feature points.

Table 2 Final Shape Parameters

X0 X1 X2 X3 X5 X6 X7
5.822 —0.213 0.2 —0.337 —329.055 82.644 —100.544
Yo Y1 y2 y3 Y5 Y6 y1
6.084 0.051 —0.244 0.287 —8.987 —749.392 937.288
20 21 22 3 25 26 27

4.926 0.061 0.181 0.384 —99.5 —423.666 34.386

Fig. 1 TCP trajectory orientatigff during the evolution process

n of angle (in radians) and distance

s TPy TPs TP; TP; TPy TPy TPy

88 1.38 1.182 1.522 2.689 4914 8.26 3.736 4.336

Afte otion curve C(t) = (t —x)(t — y)(¢r — z) is obtained we can start the
esis of the overconstrained 6R linkage using motion factorization [4] as ex-
in Section 2. First the quadratic factors M; are computed by multiplying the
curve with it’s quaternion conjugate:

CC = (1> — 12.165¢ +37.143) (1> — 11.648 + 34.116) (1> — 9.8531 +24.456) (7)

By selecting the first quadratic factor from (7) polynomial division (a variant of
Euclid’s algorithm taking into account the non-commutativity of quaternion multi-
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plication) is used to divide C(¢) and single out the remainder

(—59.057ie — 0.191i — 9.9je +0.036j — 13.531ke 4 0.134k — 16.841€ +0.352)r+
+347.317ie +-1.143i+70.062je — 0.222j 4- 80.891ke — 0.667k 4+ 94.976¢€ — 2.208

®)
The constant term /3 in the rightmost factor is computed as a unique root of this
linear remainder polynomial:

h13 =i(30.463¢ +0.135) 4 j(16.643& +0.135) + k(19.36 1 — 0.329) +6.084 (9)

After the first root is computed C(z), is divided by # — k3 and the process is iterate;
with the quotient and with one of the remaining quadratic factors from (7). After the
second root is computed the quotient will be the last linear factor. All the p %“

combinations in which the quadratic factor can be chosen will produ@® six d
open 3R kinematic chains. Suitable combinations [4] then give overcopStai
linkages. Four examples are depicted in Figure 2

Fig. 2 Four different 6R linkages obtained
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5 Conclusions

We used properties of the factorized representation of rational motions to set-up
an evolution process for optimal design of corresponding linkages. The evolution
gives an open kinematic chain that, if desired, can be combined with other chains
obtained from different factorizations to produce overconstrained linkages. From a
mechanical point of view, overconstrained linkages are robust, need minimal control
elements and they are ideal for repetitive motions in an interval. In Section 4 we
illustrated this process for an overconstrained 6R linkage. So far, position matching
is good while matching orientations should be improved.

The construction relies on the factorized representation which helps to ensure v
lidity of the Study condition throughout the evolution and automatically relage
rational motion to kinematic chains. Moreover, rationality allows efﬁc"nt aj
computation of footpoints which is a crucial part in any evolution based gnec
synthesis.
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