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Abstract. In this paper it is demonstrated that the solution space of the inverse kin iC pr
of an anthropomorphic, redundant 7R chain for a given pose does consist of ei imcid-
ing circles instead of a single circle that has been reported as of today. By e dtructure
using the convention by Sheth and Uicker, the displacements within the ki s of ghe chain are
partitioned in time-invariant displacements along rigid links and time- i ements along

the seven rotative joints. In particular, the subchains of shoulder, gliypm
By respecting the ‘flips’ of these three substructures the eight-fg @
circle is obtained. The result corresponds to the eight IK sol f6r regi®nal-spherical arms and
provides a prerequisite for using all capabilities of respective

Key words: Kinematic analysis, anthropomorphic robot arm, ¥édundant manipulator, cyclic law

of cosines, virtual joints.

1 Introduction \

The inverse kinematic proble P) of a redundant robot is seeking for an infinite
set of joint configurations a given orientation and position of its endeffector.
degree of freedom (DOF) possess a kinematic re-
x-dimensional space of poses SE(3) the solution

seven rotative joints (7R) is characterized by one-
containing co! points representing certain joint config-

dundancy of degree one
space of the i
dimensional mai
urations. ati
joints (shou rist) are called anthropomorphic arms. Their structure can be
o spicrical submechanisms and one rotative (e/bow) element and thus

structure. The self-motions [5, 9] or null-space motions [7] — those

omorphic 7R arm can be characterized by the redundancy circle [1, 6, 9].
e splution set for a given pose has been computed [12] as specific interval sets
for the redundancy angle (circle segments for the elbow position) that depend on
inimally and maximally feasible values of the seven joints.

The approach of this paper is based on the works by Shimizu et al. [12]: the robot
redundancy is parametrized by the elbow angle with respect to redundancy circles.
The modeling here employs the kinematic convention by Sheth and Uicker [11],
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Fig. 1: Overview of used notation for links, joints, and joint groups of the 7R chain.

instead of the convention by Denavit and Hartenberg [8]. Due to the advantageous
properties of this convention [4], the kinematic SRS structure of the robot is well
reflected and the analytic solution procedure is simplified. As main contribution, th
approach yields the insight that a complete solution of the inverse kinematics d
not incorporate one but eight different one-parameter sets in parameter space,
each represent eight circles coinciding in R?, the Euclidean workspagg [2,

The structure of the paper reads as follows: In Sec. 2 the robot model i
duced and the forward kinematics is computed. Sec. 3 presents gegietricqanalysis
within three planes of the robot’s geometry. Sec. 4 contains the ¢ jogrof the
inverse kinematics, including a brief example. The paper is ¢ inSec. 5.

2 Forward Kinematics

e igdex from the index
double index from

The eight links of the 7R chain are enumerated by
set .7, = (1,2,...,8). The seven joints are equi
S, =((1,2),(2,3),...,(7,8)). The first and st\three joints are referred by s
(shoulder) and by w (wrist). The elbow is denote u (cubital). The reference
location at the first link is called b (ba d the reference location of the last link
is called e (endeffector), see the

The description of the geome f an ant opomorphlc arm (Mitsubishi PA10)
is given in Table 1 in terms (&;&th icker parameters. The values b = 0 in

o

each row reflect that each seq pair of joint axes is intersecting. The spherical
constellation of the first three joint axes is reflected by zeros of the
translative parameters in 2-3 and 6-7. The reference posture of the robot in
ghed configuration (as displayed in Figure 4a).

icker specification, the forward kinematics of the 7DOF
kinematic i configuration vector ¢ = (q12,¢2, 34,945,956, 467,473 )> With
q =q" for i e t, as the chain of matrix multiplications

uler angle (f/;,ﬁk,ﬁck) as Ly = L('%, ¢, Br, be, 04, ;) for all k € .4 and
t displacement J;; = J(g;) = D,(q,;) is given as time-variant z-rotation for
all (i, j) € .7, [2, 4.

! In terminology of [12], the complete solution reported here incorporates the inversion of the three
cosine-type into the solution procedure. In comparison to the recent work [10] which employs a
parametrization with respect to the second joint, the parametrization via the redundancy angle
permits the direct interpretation as eight coinciding elbow circles.
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Link ¢y dy v ¢ B b o g
- - - )2 - - )2
2 qi2 - - - 77[/2 - - -
3 g - - - 4m/2 - - -
4 G - - ZM/Z 771.'/2 - - lw/z
S qs - - Lo/2 4m/2 - - /2
6 g - - - -n/2 - - -
7 qe1  — - - +r/2 - - -
8 g - - L./2 - - = L./2

Table 1: Sheth—Uicker parameters of an anthropomorphic 7R arm with sequentially-orthogo
joint axes. The numerical lengths base—shoulder, shoulder—elbow, elbow—wrist, and wrist—effe
are [,, = 31.7cm, I, = 38.0cm, [,,, = 48.0cm, and /,,, = 12.28 cm for the Mitsubishi PA1

o
For the rotative part R,, = E, of D,, = (R(’)’e ""-’) = (Pe Ple) =P,, the

1 0
kinematics of Equation 1 is simplified to

R.= R, -Z, R, Zy;-R; Zy, ‘R, -Zys R, - Zss R - Z
~—~
=I ::S14 =
=I1-S,-R,-Zys-R,-Ss-1=5,-R,-Zs-R;-§

Here, the simplifications R, =1 and R; = I folloyffropd theirst and last row in
Table 1 and the compact forms S, and Sss represent the sphicrical subchains.

3 Geometry

Three planes are introduced to dgscribg’ the possible postures of an SRS arm with
a specific end-effector pose: the Ie 2 orthogonal to the shoulder-wrist
vector d,, contains the current w po8igbn; the elbow plane .77 is that affine
subspace containing the positi of shoulder, elbow, and wrist; one of the elbow
planes is distinguished as thegsefe (anchor) plane J%,. See Figure 2 for three-

dimensional sketches.
Circle plane Z.. &endeffector pose D, = (Rgf ’blf), the wrist p,, = p, +d.,,

18 constant sin

=(0,0,1,)" and d,,, are constant:

~d,.)—dy = (dy.— [R], - [d..] ) —ds

'(18>_(18>' v
we bs

Thu§, @Qreduyndant arm motion only involves the elbow position. Since /[, and /,,
constant, the elbow is constrained to a circle given as the intersection of the
sphere .7, = (p,,l,,) and the wrist sphere .%,, = (p,,,/,,,). The intersecting
circle”s, = .7, N .7, is called the circle of redundancy. The situation is indicated in
igure 2a. The normal direction 7, of the plane # containing the redundancy circle
" C ¢ is contained is given as i, =d,,, /||d,,||. The circle midpoint p,, is computed
by solving the Pythagorean relations k*+r. = I, and (||d,, || — k)*+r. = [, of the
triangle A = A(p,, p.,p,) for k = m (|| +12,—I2,). The center p,, of the
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The circle of redundancy lays Triangle geometry in the refer- Illustrated virtual joints
in the plane . with unit nor- ence plane .7, (or elbow plane Jz; for coveringthe re ndanc
mal vector A, passing through %) with normal direction #i, circle while ke€pi
the midpoint p,,. (or ). and real joints c

Fig. 2: Sketches of an anthropomorphic 7R arm.
redundancy circle %, is then determined as p,, = p, + K - fi... dius r, of

the circle is computed with r, = /12, — k? (see Figure 3

Elbow plane 4. In contrast to A = A(S,U,W) (F1 e two triangles,
A, =AU, ,W)and A = A(S,U_ W in Fi ct the orientation of
the axis of the elbow joint Jys. For such orlented iangles, the cyclic form of the law
of cosines [2] can be applied prov1d1ng the tr1gon ic identities

cos(y) = +cos( —sin(ea) - sin(f

. M “4)

sin(y) = —sinfg) - cos(a) ~sm(B) ,

which are used to compute to d ine th®oriented” angles v* and v,. The solu-

tions for elbow joint g4, and‘g;séare then derived [2] with the oriented triangles
rég¥ion

8 (cos(¢) - cos(g) —sin(@) -sin(g)) . 5)
r ¢ are given with sin(¢) = r,/l,, and cos(@) =
a). The values for ¢ are given with sin(g) = rl,/ L,
” Using the previously computed expressions, kK = 5 0 de
nd r, = \/I2, — k2, and simplifying the terms, the two possible
m Equation 5 are determined as’

iven the triangle A in Figure 3a with interior angles ¢, v, ¢ € [0,x], the oriented angles of
e-elbow triangle A on the right hand side of Figure 3b are given as the supplementary
angles’@™, ™, v™ (with ¢” := 7 — ¢). The angles of the negative-elbow triangle A _ on the left hand
ide of Figure 3b are given as the 7-shifted angles @,z, G,x, U, (With @, := T+ @).

In [12] only one solution is reported. Note, that the two solutions are not covered by an elbow
rotation of 7: while rotating along the circle, the elbow angle remains constant. However, the elbow
configuration ¢g,s_ is the negative of the configuration g,s. : apart from any ‘stretched-out’ posture,
where the two values coincide qss,. = qqs— = 0, they differ in general postures. In Figure 3b, this
distinction is reflected by the counter-clockwise orientations of all six angles.
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Sketch of triangle A(S,U,W) spanned by Two directed triangles A, = g(S U+7
shoulder S, elbow U, and wrist W with interior, A_ = A(S,U_,W) with exterios"gi
undirected angles, ¢, v, ¢, height r,, and edge  gles in counter-clockwise o
section K. rected edges directed edgesd,

Fig. 3: Triangles spanned by shoulder, elbow, and €.

4B, |d

uw

Qs> Qas— = ia008< (6)
Reference plane Z,. Each of the two triangle aid A _, can be rotated around
the axis (p,,d,,). For parametrization of all points the (two instances of the)
redundancy circle, the angle v is defi While the rotation axis is defined with
fi. =d¢,, an ‘x-axis’ is not given prioki manipulator’s geometry. As shown
in the article [12], by fixing ¢s, tQ zZ&ro — fora given target pose P, and a deduced
elbow configuration g,s — valugsy g;, and ¢,3, for the first two shoulder joints, J;,
and J,3, can be determined by ‘my of using the rotative forward kinematics from
' solving

+d.) —p = [R] 14" [dsuh—’_ [R] 15° [d”W]S 7
NV ((1)+ez(2) ’

ow joint p, = p, +d,, for the reference angles g}, and g3,
fulfillin , is used to define y = 0. According to Equation 6, two elbow
it i Ibow plane .77 realize the endeffector pose. For ensuring unique-
position p,,, for the positive value g5, is selected to define direction
e ‘x-ax1s’ and the circle angle y = 0. The elbow plane .77 is thus equipped with
11tFor, oriented basis by the indicator axis b, = (p,; — Pu)/||[Pus — Pu|| and by
the normal direction b, = i, = (p, — p,)/||p. — p.||, providing its oriented normal
rection, A, == l;x X l;y (see Figure 2b). The reference plane 7%, is defined as the
elbow plane .77} in this specific configuration. While the orientation of y is induced
by the normal direction of the circle plane #i. = d,,, its identity ¥ = 0 is fixated by
the introduced reference plane J7,.
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Reference posture corresponding to the Sheth—  Decoupled regional-spherical 6R arm obtained
Uicker specification in Table 1. by deactivating the third joint.

Fig. 4: Two sketches of arms in reference posture.

4 Inverse Kinematics

In the first step of the inverse kinematics computation, the IKP is solved for a give,
endeffector pose P, with a ‘reference configuration’ for the joints. In the secon
step, the modifications of this configuration for (i) swapping to a different ing
of the circle and (ii) letting the elbow travel along the redundancy circl® are o
First Step. A feasible elbow angle g} can be selected from Equatio
ble reference configuration for g3,,45;,43, is determined with Equ
selected four angles g7,,95;, 95, ¢)s. @ configuration for the joint
shoulder, Js,Jg7, 75, can be computed by solving Equation 2

Sss(‘lss,f]m,fhs) :EST ‘ZT(CIL) E 'S1T4(‘]Tz §4 . (®)

by

In total, one feasible solution g* = (¢},, 4%, G5as 45> 9%, Pl 4 ) 4o the Inverse Kine-

matics Problem is obtained.

Second Step. Given a feasible configuration gq in the first step, the second
step consists of modifying this configuration in such” way that the elbow travels
along (one of the eight instances,of) th¢’rédundancy circle. The selected reference
configuration g* fulfills the forw k s Equation 1, and in particular, the
rotative pendantR,, =S}, ‘R, - Z;; @R - S%, tion 2, with the shoulder matrix S}, =
Si(ar2 @53 454) =Z(q7) R, - )Ry -Z(q3,). the elbow matrix Zj5 = Z(gj;), and
the wrist matrix S5 = 8% ( = Z(q%) R,-Z(q%,) ‘R, -Z(q%;)- The change of
the elbow position on thg circle is expressed by introducing the virtual
joints J5; and Jz5 into the igure 2c) as

R{. Similarly, R; maps the z-axis of the endeffector frame to
the direti : R; describes the inverse rotation Ry = Eg (Figure 2c).

1on g that realizes a certain redundancy angle y is computed by
displacement of the two virtual joints into the joint configuration g*.
er configuration (g1,,¢»3,q34) is computed so that the wrist displacement
14(g12,¢23,934) compensates for the rotation Zg; (W) of the virtual joint Jy; as

Siu=R;-Z5 (y) R; - S, = exp(y A7) S}, 9)

0 —ay a
witha® := ( i 0 —321 ) . For the wrist, a spherical displacement Sss = S5z (¢s6, 67, G73)

—ay 4

compensating for the rotation Zg (— ) of the virtual joint Jg5 is computed with
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Algorithm 1 Euler angle computation (zyz-convention)

(in) Rotation matrix R=R,(y) -Ry(B) -R.(a) T Y4 < atany (+Rp3), +R15/5)
(OUt) Euler angles (7+7ﬁ+7 a+)7 (7— 3 ﬁ* ) (Z,) 8: V- atan2(_R[Z,3]7 _R[IJ] /S)
. . 9: else # Singular
1: function ROTMAT-2-EA-ZYZ(R) 10: oy atany (R, Ry
2 B+ < acos(Rpy), B+ — P+
. 11: a_ <0
3: s < sin(B4) 12 70
4: if s 7é 0 then # Regular 13 + « atan (R R )
5 oy atany(+Rps /s, —Rp.)/5) ' v 2 W2y Ky
6 o_ < atanz(—R /S +R /S) 14: return (Y+,ﬁ+,a+),(}/,,ﬁ,,a,)

=953 [exp(—l]l ﬁf@)]ee .

For augmenting the computation with the second solution,* the, hodeling via
Sheth—Uicker parameters (Table 1) offers a straightforward approgdch: dis-

placement rotations R,, R;, R, and R,, defined by f,, f; and TO Table 1,
are quarter-turn matrices with coordinates

Table 2: Matrix-to-zyz-angle conversion method
Sss =85 Ry -Zgs(—y) Ry = [R]eb exp(—y i) [R]be @

R =R, =R,(-%)=(00 & R, =R, = 06 )
2 =6 2 0-10 3 =7 — 0+10

With these properties and R, (—7/2) -Ry(+7/2) = L\t is rved that the shoulder
displacement S, = Z(q1,) R, - Z(g») - R; - Z( he wrist displacement Ssg =
Z(qss) Ry Z(qe7) - R, - Z(g7s) feature the shape of an Buler rotation matrix in zyz-
convention. For this reason, the joint ¢ urations for the matrices S;4 and Ssg,

81y =exp(y-a;) '51*4 S =S5 [exP(_W'ﬁ?)]ee ’ an

from Eq. 9 and Eq. 10 can be puted with Alg. 2. Since the conversion method
returns two solution for the r griplet (g12,¢23,¢34) and for the wrist triplet
(gs6, 467, q73), and considgting e two solutions for the elbow joint ¢4 (Eq. 6), the
size of the solution space onsingular configuration) is determined as

LBOW|'|WRIST"|CIRCLE| 22-2-2~(°01) 28-(001)

o

| CONFIGS | =

coherent to'@ight I utions of a corresponding regional-spherical arm (Fig. 4b).
Example., A mple for solutions to the inverse kinematics problem on eight dif-
ferent ci is shown in Figure 5. The signum triplets in the captions indicate the
flip he s ains shoulder, elbow, and wrist.

igtcrmining the shoulder angles and wrist angles from the matrices Sy, and Ssg, the method
in [12]is based on orthogonal decomposition of rotation matrices and solving for (g2, ¢»3,¢s:) and
g6, 467,473 ), by coefficient comparison with respect to . For the shoulder, the equation

814(q12: 423, G3s) = exp(y - A7) -8, = sin(y) - A7 -8, + cos(y) - (—(A7)?)- 87, + AZ-S}, |
—A —B —C

witha? :=a-a", and the coefficients of S are analyzed. For the wrist, a similar approach is chosen.
In both cases, the coefficient analysis only reports one of the two feasible solutions.
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5 Conclusion and Outlook
The paper documents eight coinciding circles with 8 - (co!) sgldtions e inverse
kinematics problem of anthropomorphic arms and proyi sgential step for
using all capabilities of such manipulators. For this go int

ti

al analysis [12]
can be combined with the presented modeling and gém in the future.
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