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Abstract. In this paper it is demonstrated that the solution space of the inverse kinematic problem
of an anthropomorphic, redundant 7R chain for a given pose does consist of eight different coincid-
ing circles instead of a single circle that has been reported as of today. By modeling the structure
using the convention by Sheth and Uicker, the displacements within the kinematics of the chain are
partitioned in time-invariant displacements along rigid links and time-variant displacements along
the seven rotative joints. In particular, the subchains of shoulder, elbow, and wrist are preserved.
By respecting the ‘flips’ of these three substructures the eight-fold occupancy of the redundancy
circle is obtained. The result corresponds to the eight IK solutions for regional-spherical arms and
provides a prerequisite for using all capabilities of respective robots in practical applications.
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of cosines, virtual joints.

1 Introduction
The inverse kinematic problem (IKP) of a redundant robot is seeking for an infinite
set of joint configurations for a given orientation and position of its endeffector.
Since robotic chains with seven degree of freedom (DOF) possess a kinematic re-
dundancy of degree one in the six-dimensional space of poses SE(3) the solution
space of the IKP of chains with seven rotative joints (7R) is characterized by one-
dimensional manifolds: each containing ∞1 points representing certain joint config-
urations. Kinematic 7R chains with intersecting axes of the first and the last three
joints (shoulder and wrist) are called anthropomorphic arms. Their structure can be
grouped in two spherical submechanisms and one rotative (elbow) element and thus
be called an SRS structure. The self-motions [5, 9] or null-space motions [7] – those
joint configuration changes that let the endeffector’s pose remain constant – of an
anthropomorphic 7R arm can be characterized by the redundancy circle [1, 6, 9].
The solution set for a given pose has been computed [12] as specific interval sets
for the redundancy angle (circle segments for the elbow position) that depend on
minimally and maximally feasible values of the seven joints.

The approach of this paper is based on the works by Shimizu et al. [12]: the robot
redundancy is parametrized by the elbow angle with respect to redundancy circles.
The modeling here employs the kinematic convention by Sheth and Uicker [11],
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2 B. Bongardt

Fig. 1: Overview of used notation for links, joints, and joint groups of the 7R chain.

instead of the convention by Denavit and Hartenberg [8]. Due to the advantageous
properties of this convention [4], the kinematic SRS structure of the robot is well
reflected and the analytic solution procedure is simplified. As main contribution, the
approach yields the insight that a complete solution of the inverse kinematics does
not incorporate one but eight different one-parameter sets in parameter space which
each represent eight circles coinciding in R3, the Euclidean workspace [2, 3].1

The structure of the paper reads as follows: In Sec. 2 the robot model is intro-
duced and the forward kinematics is computed. Sec. 3 presents geometric analysis
within three planes of the robot’s geometry. Sec. 4 contains the computation of the
inverse kinematics, including a brief example. The paper is concluded in Sec. 5.

2 Forward Kinematics
The eight links of the 7R chain are enumerated by a simple index from the index
set IL =

(
1,2, . . . ,8

)
. The seven joints are equipped with a double index from

IJ =
(
(1,2),(2,3), . . . ,(7,8)

)
. The first and the last three joints are referred by s

(shoulder) and by w (wrist). The elbow is denoted by u (cubital). The reference
location at the first link is called b (basis) and the reference location of the last link
is called e (endeffector), see the sketch in Figure 1.

The description of the geometry of an anthropomorphic arm (Mitsubishi PA10)
is given in Table 1 in terms of its Sheth–Uicker parameters. The values b = 0 in
each row reflect that each sequential pair of joint axes is intersecting. The spherical
constellation of the first three and last three joint axes is reflected by zeros of the
translative parameters in the rows 2-3 and 6-7. The reference posture of the robot in
Table 1 represents a fully-stretched configuration (as displayed in Figure 4a).

By means of the Sheth–Uicker specification, the forward kinematics of the 7DOF
kinematic chain for a configuration vector qqq = (q12,q23,q34,q45,q56,q67,q78), with
qqq = qqq(t) for a certain time t, as the chain of matrix multiplications

DDDbe = FK(qqq) = LLL1 ·JJJ12 ·LLL2 ·JJJ23 ·LLL3 ·JJJ34 ·LLL4 ·JJJ45 ·LLL5 ·JJJ56 ·LLL6 ·JJJ67 ·LLL7 ·JJJ78 ·LLL8 . (1)

Each link displacement LLLk is given as a time-invariant displacement parametrized
by a dual Euler angle (γ̃k, β̃k, α̃k) as LLLk = LLL(γk,ck,βk,bk,αk,ak) for all k ∈ IL and
each joint displacement JJJi j = JJJ(qi j) = DDDz(qi j) is given as time-variant z-rotation for
all (i, j) ∈IJ [2, 4].

1 In terminology of [12], the complete solution reported here incorporates the inversion of the three
cosine-type into the solution procedure. In comparison to the recent work [10] which employs a
parametrization with respect to the second joint, the parametrization via the redundancy angle
permits the direct interpretation as eight coinciding elbow circles.
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Link qi j di j γ j c j β j b j α j a j

1 – – – lbs /2 – – – lbs /2

2 q12 – – – −π /2 – – –
3 q23 – – – +π /2 – – –

4 q34 – – lsu /2 −π /2 – – lsu /2
5 q45 – – luw /2 +π /2 – – luw /2

6 q56 – – – −π /2 – – –
7 q67 – – – +π /2 – – –

8 q78 – – lwe /2 – – – lwe /2

Table 1: Sheth–Uicker parameters of an anthropomorphic 7R arm with sequentially-orthogonal
joint axes. The numerical lengths base–shoulder, shoulder–elbow, elbow–wrist, and wrist–effector
are lbs = 31.7cm, lsu = 38.0cm, luw = 48.0cm, and lwe = 12.28cm for the Mitsubishi PA10.

For the rotative part RRRbe = EEEe of DDDbe =
(

RRRbe tttbe
000 1

)
=
(PPPe pppe

000 1

)
= PPPe, the forward

kinematics of Equation 1 is simplified to

RRRbe = RRR1︸︷︷︸
=III

· ZZZ12 ·RRR2 ·ZZZ23 ·RRR3 ·ZZZ34︸ ︷︷ ︸
=..SSS14

·RRR4 ·ZZZ45 ·RRR5 · ZZZ56 ·RRR6 ·ZZZ67 ·RRR7 ·ZZZ78︸ ︷︷ ︸
=..SSS58

· RRR8︸︷︷︸
=III

= III ·SSS14 ·RRR4 ·ZZZ45 ·RRR5 ·SSS58 ·III = SSS14 ·RRR4 ·ZZZ45 ·RRR5 ·SSS58 .

(2)

Here, the simplifications RRR1 = III and RRR8 = III follow from the first and last row in
Table 1 and the compact forms SSS14 and SSS58 represent the spherical subchains.

3 Geometry
Three planes are introduced to describe the possible postures of an SRS arm with
a specific end-effector pose: the circle plane Hc orthogonal to the shoulder-wrist
vector dddsw contains the current elbow position; the elbow plane Hb is that affine
subspace containing the positions of shoulder, elbow, and wrist; one of the elbow
planes is distinguished as the reference (anchor) plane Ha. See Figure 2 for three-
dimensional sketches.
Circle plane Hc. For one endeffector pose DDDbe =

(
RRRbe tttbe
000 1

)
, the wrist pppw = ppps +dddsw

is constant since shoulder ppps = (0,0, lbs)
T and dddsw are constant:

dddsw = pppw− ppps = (pppe−dddwe)−dddbs = (dddbe−
[
RRR
]

be
·
[
dddwe

]
e
)−dddbs

= tttbe−RRRbe ·
( 0

0
lwe

)
−
( 0

0
lbs

)
.

(3)

Thus, a redundant arm motion only involves the elbow position. Since lsu and luw

are constant, the elbow is constrained to a circle given as the intersection of the
shoulder sphere S s = (ppps, lsu) and the wrist sphere S w = (pppw, luw). The intersecting
circle Cu = S s∩S w is called the circle of redundancy. The situation is indicated in
Figure 2a. The normal direction n̂̂n̂nc of the plane Hc containing the redundancy circle
Cu⊂Hc is contained is given as n̂̂n̂nc =dddsw/‖dddsw‖. The circle midpoint pppm is computed
by solving the Pythagorean relations κ2 + r2

u = l2
su and (‖dddsw‖−κ)2 + r2

u = l2
uw of the

triangle = (ppps,pppu,pppw) for κ = 1
2·‖dddsw‖ ·

(
‖dddsw‖2 + l2

su− l2
uw

)
. The center pppm of the
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4 B. Bongardt

The circle of redundancy lays
in the plane Hc with unit nor-
mal vector n̂̂n̂nc passing through
the midpoint pppm.

Triangle geometry in the refer-
ence plane Ha (or elbow plane
Hb) with normal direction n̂̂n̂na

(or n̂̂n̂nb).

Illustrated virtual joints J0̃1̃ and
J8̃9̃ for covering the redundancy
circle while keeping final pose
and real joints constant.

Fig. 2: Sketches of an anthropomorphic 7R arm.

redundancy circle Cu is then determined as pppm = ppps +κ · n̂̂n̂nc. Via κ , the radius ru of
the circle is computed with ru =

√
l2
su−κ2 (see Figure 3a).

Elbow plane Hb. In contrast to = (S,U,W ) (Figure 3a), the two triangles,
+ = (S,U+,W ) and − = (S,U−,W ), in Figure 3b reflect the orientation of

the axis of the elbow joint J45. For such oriented triangles, the cyclic form of the law
of cosines [2] can be applied providing the trigonometric identities

cos(γ) = +cos(α) · cos(β )− sin(α) · sin(β )
sin(γ) =−sin(α) · cos(β )− cos(α) · sin(β ) ,

(4)

which are used to compute to determine the oriented2 angles υ π̄ and υ+π . The solu-
tions for elbow joint q45+ and q45− are then derived [2] with the oriented triangles

+ and − with the compact expression

q45+,q45− =±acos
(
cos(ϕ) · cos(ς)− sin(ϕ) · sin(ς)

)
. (5)

The trigonometric values for ϕ are given with sin(ϕ) = ru / luw and cos(ϕ) =
(‖dddsw‖ − κ)/ luw (Figure 3a). The values for ς are given with sin(ς) = ru / lsu

and cos(ς) = κ /‖lsu‖. Using the previously computed expressions, κ = 1
2·‖dddsw‖ ·(

‖dddsw‖2 + l2
su− l2

uw

)
and ru =

√
l2
su−κ2, and simplifying the terms, the two possible

elbow angles from Equation 5 are determined as3

2 Given the triangle in Figure 3a with interior angles ς ,υ ,ϕ ∈ [0,π], the oriented angles of
the positive-elbow triangle + on the right hand side of Figure 3b are given as the supplementary
angles ϕ π̄ ,ς π̄ ,υ π̄ (with φ π̄ ..= π−φ ). The angles of the negative-elbow triangle − on the left hand
side of Figure 3b are given as the π-shifted angles ϕ+π ,ς+π ,υ+π (with φ+π

..= π +φ ).
3 In [12] only one solution is reported. Note, that the two solutions are not covered by an elbow
rotation of π: while rotating along the circle, the elbow angle remains constant. However, the elbow
configuration q45− is the negative of the configuration q45+: apart from any ‘stretched-out’ posture,
where the two values coincide q45+ = q45− = 0, they differ in general postures. In Figure 3b, this
distinction is reflected by the counter-clockwise orientations of all six angles.
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Sketch of triangle (S,U,W ) spanned by
shoulder S, elbow U , and wrist W with interior,
undirected angles, ς , υ , ϕ , height ru, and edge
section κ .

Two directed triangles + = (S,U+,W ) and
− = (S,U−,W ) with exterior, directed an-

gles in counter-clockwise orientation, and di-
rected edges directed edges dddsu, ddduw, and dddws.

Fig. 3: Triangles spanned by shoulder, elbow, and wrist.

q45+,q45− =±acos
( l2

su + l2
uw−‖dddsw‖2

2 · lsu · luw

)
. (6)

Reference plane Ha. Each of the two triangles, + and −, can be rotated around
the axis (ppps,dddsw). For parametrization of all points on the (two instances of the)
redundancy circle, the angle ψ is defined. While the rotation axis is defined with
n̂̂n̂nc = ddd⊕sw, an ‘x-axis’ is not given a priori by the manipulator’s geometry. As shown
in the article [12], by fixing q34 to zero – for a given target pose PPPe and a deduced
elbow configuration q45 – values, q12 and q23, for the first two shoulder joints, J12

and J23, can be determined by means of using the rotative forward kinematics from
Equation 2 and dddsw from Equation 3 by solving

dddsw = pppw− ppps = (ppps +dddsu +ddduw)− ppps =
[
RRR
]

14
·
[
dddsu

]
4
+
[
RRR
]

15
·
[
ddduw

]
5

= SSS14(q12,q23,0) ·
(( 0

0
lsu

)
+RRR4 ·ZZZ(q45) ·

( 0
0

luw

))
.

(7)

The position of the elbow joint pppu = ppps +dddsu for the reference angles q?12 and q?23,
fulfilling Equation 7, is used to define ψ = 0. According to Equation 6, two elbow
positions in the elbow plane Hb realize the endeffector pose. For ensuring unique-
ness, the elbow position pppu+ for the positive value q45+ is selected to define direction
of the ‘x-axis’ and the circle angle ψ = 0. The elbow plane Hb is thus equipped with
an interior, oriented basis by the indicator axis b̂bbx = (pppu+− pppm)/‖pppu+− pppm‖ and by
the normal direction b̂bby = n̂̂n̂nc = (pppw− ppps)/‖pppw− ppps‖, providing its oriented normal
direction, n̂̂n̂nc

..= b̂bbx× b̂bby (see Figure 2b). The reference plane Ha is defined as the
elbow plane Hb in this specific configuration. While the orientation of ψ is induced
by the normal direction of the circle plane n̂̂n̂nc

∼= dddsw, its identity ψ = 0 is fixated by
the introduced reference plane Ha.
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6 B. Bongardt

Reference posture corresponding to the Sheth–
Uicker specification in Table 1.

Decoupled regional-spherical 6R arm obtained
by deactivating the third joint.

Fig. 4: Two sketches of arms in reference posture.

4 Inverse Kinematics
In the first step of the inverse kinematics computation, the IKP is solved for a given
endeffector pose PPPe with a ‘reference configuration’ for the joints. In the second
step, the modifications of this configuration for (i) swapping to a different instances
of the circle and (ii) letting the elbow travel along the redundancy circle are outlined.
First Step. A feasible elbow angle q?45 can be selected from Equation 6. A feasi-
ble reference configuration for q?12,q

?
23,q

?
34 is determined with Equation 7. For such

selected four angles q?12,q
?
23,q

?
34,q

?
45, a configuration for the joints of the spherical

shoulder, J56,J67,J78, can be computed by solving Equation 2 for

SSS58(q56,q67,q78) =RRRT
5 ·ZZZT (q?45) ·RRRT

4 ·SSST
14(q

?
12,q

?
23,q

?
34) ·RRRbe . (8)

In total, one feasible solution q?q?q? = (q?12,q
?
23,q

?
34,q

?
45,q

?
56,q

?
67,q

?
78)

T to the Inverse Kine-
matics Problem is obtained.
Second Step. Given a feasible configuration qqq? selected in the first step, the second
step consists of modifying this configuration in such way that the elbow travels
along (one of the eight instances of) the redundancy circle. The selected reference
configuration qqq? fulfills the forward kinematics Equation 1, and in particular, the
rotative pendant RRRbe =SSS?14 ·RRR4 ·ZZZ?

45 ·RRR5 ·SSS?58, Equation 2, with the shoulder matrix SSS?14 =
SSS?14(q

?
12,q

?
23,q

?
34) = ZZZ(q?12) ·RRR2 ·ZZZ(q?23) ·RRR3 ·ZZZ(q?34), the elbow matrix ZZZ?

45 = ZZZ(q?45), and
the wrist matrix SSS?58 =SSS?58(q

?
56,q

?
67,q

?
78)=ZZZ(q?56) ·RRR2 ·ZZZ(q?67) ·RRR3 ·ZZZ(q?78). The change of

the elbow position on the redundancy circle is expressed by introducing the virtual
joints J0̃1̃ and J8̃9̃ into the chain (Figure 2c) as

RRRbe =RRR0̃ ·ZZZ 0̃1̃(ψ) ·RRR1̃ ·SSS?14 ·RRR4 ·ZZZ?
45 ·RRR5 ·SSS?58 ·RRR8̃ ·ZZZ 8̃9̃(−ψ) ·RRR9̃ .

Here, RRR0̃ maps the z-axis of the base frame to the direction n̂̂n̂nc, and RRR1̃ describes the
inverse rotation RRR1̃ = RRRT

0̃ . Similarly, RRR8̃ maps the z-axis of the endeffector frame to
the direction n̂̂n̂nc, and RRR9̃ describes the inverse rotation RRR9̃ =RRRT

8̃ (Figure 2c).
A configuration qqq that realizes a certain redundancy angle ψ is computed by

‘pushing’ the displacement of the two virtual joints into the joint configuration qqq?.
A shoulder configuration (q12,q23,q34) is computed so that the wrist displacement
SSS14 = SSS14(q12,q23,q34) compensates for the rotation ZZZ 0̃1̃(ψ) of the virtual joint J0̃1̃ as

SSS14 =RRR0̃ ·ZZZ 0̃1̃(ψ) ·RRR1̃ ·SSS?14 = exp(ψ · n̂̂n̂n⊗c ) ·SSS?14 (9)

with aaa⊗ ..=
(

0 −a3 a2
a3 0 −a1
−a2 a1 0

)
. For the wrist, a spherical displacement SSS58 =SSS58(q56,q67,q78)

compensating for the rotation ZZZ 8̃9̃(−ψ) of the virtual joint J8̃9̃ is computed with
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Algorithm 1 Euler angle computation (zyz-convention)

(in) Rotation matrix RRR =RRRz(γ) ·RRRy(β ) ·RRRz(α)
(out) Euler angles (γ+,β+,α+),(γ−,β−,α−)

1: function ROTMAT-2-EA-ZYZ(RRR)
2: β+← acos(RRR[3,3]), β−←−β+

3: s← sin(β+)
4: if s 6= 0 then # Regular

5: α+← atan2(+RRR[3,2]/s,−RRR[3,1]/s)
6: α−← atan2(−RRR[3,2]/s,+RRR[3,1]/s)

7: γ+← atan2(+RRR[2,3],+RRR[1,3]/s)
8: γ−← atan2(−RRR[2,3],−RRR[1,3]/s)
9: else # Singular

10: α+← atan2(RRR[1,2],RRR[1,1])
11: α−← 0
12: γ+← 0
13: γ−← atan2(RRR[1,2],RRR[1,1])

14: return (γ+,β+,α+),(γ−,β−,α−)

Table 2: Matrix-to-zyz-angle conversion method

SSS58 = SSS?58 ·RRR8̃ ·ZZZ 8̃9̃(−ψ) ·RRR9̃ = SSS?58 ·
[
RRR
]

eb
· exp(−ψ · n̂̂n̂n⊗c ) ·

[
RRR
]

be

= SSS?58 ·
[
exp(−ψ · n̂̂n̂n⊗c )

]
ee
.

(10)

For augmenting the computation with the second solution,4 the modeling via
Sheth–Uicker parameters (Table 1) offers a straightforward approach: The link dis-
placement rotations RRR2, RRR3, RRR6, and RRR7, defined by β2, β3 and β6, β7 from Table 1,
are quarter-turn matrices with coordinates

RRR2 =RRR6 =RRRx

(
−π

2

)
=
(1 0 0

0 0 +1
0 −1 0

)
RRR3 =RRR7 =RRRx

(
+π

2

)
=
(1 0 0

0 0 −1
0 +1 0

)
.

With these properties and RRRx(−π/2) ·RRRx(+π/2) = III, it is observed that the shoulder
displacement SSS14 = ZZZ(q12) ·RRR2 ·ZZZ(q23) ·RRR3 ·ZZZ(q34) and the wrist displacement SSS58 =
ZZZ(q56) ·RRR6 ·ZZZ(q67) ·RRR7 ·ZZZ(q78) feature the shape of an Euler rotation matrix in zyz-
convention. For this reason, the joint configurations for the matrices SSS14 and SSS58,

SSS14 = exp(ψ · n̂̂n̂n⊗c ) ·SSS?14 SSS58 = SSS?58 ·
[
exp(−ψ · n̂̂n̂n⊗c )

]
ee
, (11)

from Eq. 9 and Eq. 10 can be computed with Alg. 2. Since the conversion method
returns two solution for the shoulder triplet (q12,q23,q34) and for the wrist triplet
(q56,q67,q78), and considering the two solutions for the elbow joint q45 (Eq. 6), the
size of the solution space (for a nonsingular configuration) is determined as

| CONFIGS |= | SHOULDER | · | ELBOW | · |WRIST | · | CIRCLE |= 2 ·2 ·2 · (∞1) = 8 · (∞1)

coherent to eight IKP solutions of a corresponding regional-spherical arm (Fig. 4b).
Example. An example for solutions to the inverse kinematics problem on eight dif-
ferent circles is shown in Figure 5. The signum triplets in the captions indicate the
flips of the subchains shoulder, elbow, and wrist.

4 For determining the shoulder angles and wrist angles from the matrices SSS14 and SSS58, the method
in [12] is based on orthogonal decomposition of rotation matrices and solving for (q12,q23,q34) and
(q56,q67,q78), by coefficient comparison with respect to ψ . For the shoulder, the equation

SSS14(q12,q23,q34) = exp(ψ · n̂̂n̂n⊗c ) ·SSS?14 = sin(ψ) · n̂̂n̂n⊗c ·SSS?14︸ ︷︷ ︸
=.. AAAs

+ cos(ψ) · (−(n̂̂n̂n⊗c )2) ·SSS?14︸ ︷︷ ︸
=.. BBBs

+ n̂̂n̂nc ·SSS?14︸ ︷︷ ︸
=..CCCs

,

with aaa ..= aaa ·aaaT , and the coefficients of SSS are analyzed. For the wrist, a similar approach is chosen.
In both cases, the coefficient analysis only reports one of the two feasible solutions.
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(+,+,+) (+,−,+) (−,+,+) (−,−,+)

(+,+,−) (+,−,−) (−,+,−) (−,−,−)

Fig. 5: Example of eight different joint configurations corresponding one endeffector pose and one
elbow position. The links of the robot are marked with black lines to distinguish the postures.

5 Conclusion and Outlook

The paper documents eight coinciding circles with 8 · (∞1) solutions for the inverse
kinematics problem of anthropomorphic arms and provides an essential step for
using all capabilities of such manipulators. For this goal, the interval analysis [12]
can be combined with the presented modeling and computation in the future.
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