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Abstract. A linear pentapod is a parallel manipulator with five collinear ancho ts e
motion platform (end-effector), which are connected via SPS legs to the bas, i lator
has five controllable degrees-of-freedom and the remaining one is a free rotati motion
platform axis (which in fact is an axial spindle). In this paper we present 1 etrization
of the singularity variety of the linear pentapod. Moreover we compute. stance to this
rational variety with respect to a suitable metric. Kinematically thjssdiistan be interpreted as
the radius of the maximal singularity free-sphere. Moreover we e the g€sult with the radius

of the maximal singularity free-sphere in the position workspaceafid thgforientation workspace,

respectively.
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1 Introduction \ %

The Stewart-Gough platform ( times called simply Stewart platform) can be de-

This parallel
the role of t

Although the
assemblies alo

points ofgiew. imes these sub-assemblies are referred to as components [9].
In this papés we study the so-called line-body component, which is a rigid sub-
tewart PM consisting of a linear motion platform (end-effector)
five SPS legs, where the base anchor points can have position in R>.
component is referred to as linear pentapod, which is an alternative to
erial/robots for handling axis-symmetric tools (see Fig. 1). Moreover we use the
lowing notations:

1. The position of ¢ is given by the vector p = (px, py, p.)T and the orientation of ¢
is defined by a unit-vector i = (u,v,w)7.
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2. The coordinate vector b; of the platform anchor point of the jth leg is described
by the equation b; =p+rjifor j=1,...,5.
3. The base anchor point of the j-th leg has coordinates a; = (x;,y;,z;)7.

Note that all vectors are given with respect to a fixed reference frame, which can
always be chosen and scaled in a way that the following conditions hold:

x1=y1=21=Y2=22=23=0 and x=1. €))

According to [13, Theorem 12] one possible point-model for the configuration
space € of the linear pentapod reads as follows: There exists a bijection between
€ and all real points € = (u,v,W, px, Py, Pz) € R® located on the singular quad
I': u?> +v*+w? = 1. Based on this notation we study the singularity loci of Jifiga
pentapods and the distance to it in the paper at hand, which is structu@d as

We close Section 1 by a review on the singularity analysis of line
and recall the implicit equation of the singularity variety. In Secti

to the singularity variety with respect to a novel metric i
of the configuration space ¥. We also compute the cl
under the constraint of a fixed orientation and a fixed p

a conclusion and a plan for future research is givers

n, gespectively. Finally

: \

N

N

4

jg. 1 Linear pentapod with the following architectural parameters: a; = (0,0,0)7, ay =

570,0)T, a3 = (*4,73,0)7”, as = (3,7,76)7”, as = (9775,4)T, (r1,r2,r3,14,15) = (0,2,4,5,10).
Moreover it should be noted that in the illustrated design the linear platform ¢ consists of five parts,
which are jointed by four passive rotational joints (a zoom of this detail is given in the box). This
construction enlarges the workspace by compensating some joint limits of the platform S-joints.
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1.1 Singularity Variety of the Pentapod

Singularity analysis plays an important role in motion planning of PMs. For linear
pentapods the singularities as well as the singular-invariant leg-rearrangements have
been studied in [5] for a planar base and in [3] for a non-planar one. A complete list
of architectural singular designs of linear pentapods is given in [14], where also
non-architecturally singular designs with self-motions are classified (see also [12]).

Kinematical singularities occur whenever the Jacobian matrix J becomes rank
deficient, where J can be written as follows (cf. [3]):

N

pytrv=y;j |, = xj(p+rjw) —zj(px+rju)

i ...
P petriw—2z; yi(pxtrju) —x;j(py+1,

A prtrju—xj\  [(zi(py+riv) =yi(p+riw)
J= <,\ ) with 1; =
This 5 x 6 Jacobian matrix J has a rank less than five whenever thgd ter
of all its 5 X 5 sub-matrices vanish. So by naming the determinant
sub-matrix, which results from excluding the jth column, with
loci equals V(Fy,...,Fg); i.e. the variety of the ideal spanned polynomials
Fi,..., Fg. It can easily be checked by direct computations th
zero-set of the greatest common divisor F of Fy,. .., Fy. Thigsi ity polynomial
F has the following structure:

F :=(A1py+Aop:)u” + [(A3px + Aapy + As p. -+ K6 )V T (A7 px + Ag py
+Agp; +Ar0)w+ (A1 py +Anp) pe+ + (A1ap; +Ai5)py
+A16p:> +Arp2u+ (AP #Myop; +Ax)V? + [(A21 py +Azapy
+Axp, +Acs)w—+Asspy v ¥ A27p; +Asg) i+ (Ao p:
+ A30)py +A31p;” + AP v + (A% py + Azapy + Azs)w? + [Azepy”
+ (A37py +As8p A4y + (As1p:+An)py+Aszpw

2

p the ringR:R[x3,x47x57y3;Y4aYSaZ47157”17' . .,}’5]

which evide pOlynomial with the total-degree of 3 belonging to
Ru,v,w, px, Py, t for a specified orientation (u,v,w) the equation F =0
determine; a rjc surface (u,v,w) in the space of positions. This property
is of greaf i ater on.

easily be checked that the polynomial F is identical with the de-
termin X 7 matrix given in [3, Eq. (4)]. o

Rational Parametrization of the Singularity Variety

n this section we rationally parametrize the singularity variety, which is given by the
implicit equation F = 0. But before stepping into the computations, the presentation
of a formal definition of this parametrization seems necessary.
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Definition 1. Let K be a field and V C K” and W C K" be irreducible affine vari-
eties. A rational mapping from V to W is a function ¢ represented by

Silxt, o xm) fn(x1,...,xm)> 3)

g1(x1yeesxm)” T gnlxry ey Xm)

¢:V-—>W with (j)(xl,...,xm):(

where g € K(x1,...,x,) and satisfies the following properties:

1. ¢ is defined at some point of V.
2. For every (ay,...ay) € V where ¢ is defined, ¢ (a1,...an) € W.

Definition 2. Two irreducible varieties V and W are said to be birationally equiv
lent if there exist rational mappings ¢ : V --» W and y : W --» V such that
and y o ¢ be equal to idy and idy respectively. °
Definition 3. A rational variety is a variety that is birationally equivalgffjto

1/and 2].
vantages: If the

One can find the extensive discussion of above definitions in [16
Having a rational parametrization of a variety has numer
coefficients of the polynomials f; and g; of Eq. (3) belong t dif (%1,...,xm) is
an element of Q, then one obtains points with rational ina n the singular-
ity variety [16, page 3]. This is a matter, which is of high/impgrtance to computer
aided designs, as computers can calculate rational €0prd at a much faster rate.
Moreover the rationality of the singularit implies that it is path con-
nected, which means that every singular pose can be c@anected to any other singular
pose by a continuous singular motion [Z4&This property can be used for a compu-
tationally efficient approximatioﬁ i arity-free workspace by hierarchical
structured hyperboxes, where only t
singularities. Beside the rationa

fm

For the computation
exploit the idéa uscdsi
(2) by the extra

obtain a hofmogen
space P3 withtomo
B with oge s coordinates (u: v :w:0) is a point of the singularity variety;

IP3. Note that B is the ideal point of the linear platform ¢ with

condition on the vector i = (u,v,w) to be of unit-length, can be avoided
the stereographic parametrization of the unit-sphere $2:

“)

213 21 t32+t421>

13,14) —
X (374) ([32+l‘42+17t32—|—t42+17t32—|—l42—|—1

Based on this we can parametrize the lines of the bundle % with vertex B in the
finite space R? of positions with coordinates (p, Dy, Dz) as follows:
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Px Ix(t3,1 x(t3,1
B:|py|= ax(t3,t1) +4 E?: 4) 153 5934 4) . ®))
Pz

Note that the bituple (7,#,) fixes the line of the bundle % and the parameter a
determines the point on this line. By varying (t1,#,) € R? and setting ¢ = 0 one
obtains the plane through the origin, which is orthogonal to i.

Plugging #(a,t1,t2,13,t4) into F = 0 shows that the resulting expression is only
linear in a, as the ideal point B is always one of the two intersection points of a
line belonging to % with the quadric Q (x(#3,#4)). By solving this linear condition
we get a(t1,t2,13,14). Now the singular configurations X = (&;,...,&) € RO of t
linear pentapod can be rationally parametrized by (&, &;,&3) := x(#3,#4) and

£ a(ty,t,t3,14)13 i (52 —14>—1) 4 DBl ()
4 = - - )
I32+f42+1 (t32 +l42+1)2 (l32 —|—l42+1)2
2_ .2
a(ty,tr,t3,t4) 1 HB3ty h(t3e—t47+1
& =2 (2 5 ) —4 5+2 ( ) (6)
Rl (22 ) (2l
£ — a(ti,t,13,13) (3% + 14> — 1)
o B2 +142 + 1
This parametrization covers the singular variet 1on of two low-dim-

ensional sub-variety: A missing 3-dimensiona icty is defined by the denom-
inator of a(t;,t,,13,%4). In this case the residual interSettion point € R3 of the line
belonging to # with Q(x(#3,14)) is notd€ermined uniquely; i.e. the complete line
belongs to Q(x(#3,#4)). As the oNa "0, 1) cannot be obtained by the stere-
ographic parametrization, also thg 2-dimegsi@nal sub-variety (0,0, 1) is missing.

Moreover for a given singu ose X = (&1,...,&) € R® we can trivially com-
pute #1,...,#4 in a rational wa ,---, &g, thus the singularity variety is a ra-

con ble. Additionally the actuator forces can become very large and
k down of the platform [10]. Henceforth knowing the distance of a
(g1,--.,86) € R® from the singularity variety is of great importance.

rientation: We ask for the closest singular configuration O having the
same orientation (g;,g2,83) as the given pose &. As & and O only differ by a
nslation, we can define the distance between these two poses by the length of
the translation vector. Therefore O has to be a pedal-point on 2(g;,g2,83) with
respect to the point (g4, gs,g6). The set & of all these pedal-points equals the variety

V(gTL, %, gTL’ %) where A is the Lagrange multiplier of the Lagrange equation
X 'y 4
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Fig. 2 Illustrations are done for & = (57 570 2,3,4) of the linear pentapod displaygemi
Flg 1. Fixed orientation (Left): & has only four real solutions where the closest Q
(5 )3 4.0,2.5517,2.6374,0.1144) has a distance of 3.9412 units. Fixed position (ri@ht): Zha

two real solutions where the closest one I3 = (0.3701,0.5523,0.7468,2,3,4) has eriCaiyeis
tance of 48.4178°.

L(px,py, P2 A) = (px—

Fixed Position: Now we ask for the closest singular” configuration 3, which has
the same position (g4, gs,86) as he ose . As & and P8 only differ in ori-
entation, the angle € [0, 7] enclos o directions can be used as distance
functlon Note that this angle is tl spher1 1stance functlon on §2.

pedal-point on ®(g4, g5, g %

replacing the underlymg

espect to the point (gl,gz,g3) € 52 (see Fig. 2). By
1 distance by the Euclidean metric of the ambient

space R?, on. ngethe set & of pedal-points on a)(g4, 8s,86) with respect
to (g1,82,83)- can be computed as the variety V(a—];, ‘3—6, g_»Lw g—fl, gfle)

where A, an@fl, archgrLagrange multipliers of the Lagrange equation
Wk, Ao) = (u—g1) + (=)’ +(w—g) + MF+ G  (®)

with v2 4 w? — 1. It can easily be proved (see [15, Appendix B]) that in
consists of 8 points over C, where the one with the shortest spherical

mark 2. For the practical application of this spherical distance to the singularity,
we recommend to locate the position vector p in the tool-center-point of /. o
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Fig. 3 Comparison of the different configurations & (green), 9 (blue), B (yel
colored 9t = (0.5559,0.7274,0.4021,2.2966,3.4794,1.8357) with d(91, &) = 1.
d(D,8) =3.9412 and d (P, &) = 4. 4142 For this example only 16 out of 80 pedal

General Case: In contrast to the two special cases discu$§sé@yabove, the general

case deals with mixed (translational and rotational) D hus§ie question of a
suitable distance function arises. As the configurati e ¢)equals the space of
oriented line-elements, we can adopt the object defede ics discussed in [13]

for our mechanical device as follows:

ds,fﬁ\zzz |b )’ ©)

where € and £ are two config

o !’ .
ions and b; and b j denote the coordinate vectors

oints. Note that the ambient space R® (of €)
is a Euclidean space (cf. [13]).
With respect to this we can compute the closest singular configuration

MtoBGint We determine the set .# of pedal-points on the singu-

¢ ; dL JL JdL JdL JL JL JL JL
larity varie Q5 as the variety V(W’W’W’E’pr’ S )

where A, an@fl, arcthgrLagrange multipliers of the Lagrange equation
LY., px, y, Pz M1, A2) := (9N, ) + 44 G+ AaoF. (10)

Rando ples (see [15, Appendix C]) indicate that .# consists of eighty points
C, where the one with the shortest distance d to & equals 91 (see Fig. 3).

Remark 3. Note that these minimal distances can be seen as the radii of maximal
ihgularity-free hyperspheres [10] in the position workspace (see also [11]), the ori-
entation workspace (see also [8]) and the complete configuration space. Moreover
the distance d(91, ®) to the singularity variety can also be interpreted as quality
index thus it is an alternative to the value of F proposed in [4]. o
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4 Conclusions and future research

We presented a rational parametrization of the singularity variety of linear pentapods
in Section 2 and computed the distance to it in Section 3 with respect to the novel
metric given in Eq. (9), which can easily be adopted for e.g. Stewart PMs as well.
As this distance is of interest for many tasks (e.g. quality index for path planning,
radius of the maximal singularity-free hypersphere, ...) a detailed study of it (e.g.
efficient computation of 91, proof of #.# = 80, ...) is dedicated to future research.
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