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Abstract. A linear pentapod is a parallel manipulator with five collinear anchor points on the
motion platform (end-effector), which are connected via SPS legs to the base. This manipulator
has five controllable degrees-of-freedom and the remaining one is a free rotation around the motion
platform axis (which in fact is an axial spindle). In this paper we present a rational parametrization
of the singularity variety of the linear pentapod. Moreover we compute the shortest distance to this
rational variety with respect to a suitable metric. Kinematically this distance can be interpreted as
the radius of the maximal singularity free-sphere. Moreover we compare the result with the radius
of the maximal singularity free-sphere in the position workspace and the orientation workspace,
respectively.
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1 Introduction
The Stewart-Gough platform (sometimes called simply Stewart platform) can be de-
fined as a six degree-of-freedom (DOF) parallel manipulator (PM) with six identical
spherical-prismatic-spherical (SPS) legs, where only the prismatic joints are active.
This parallel robot is merely used in flight simulation where a replica cockpit plays
the role of the moving platform.

Although the Stewart platform is the most celebrated PM, some of its sub-
assemblies with a lower number of legs are of interest from theoretical and practical
points of view. Sometimes these sub-assemblies are referred to as components [9].
In this paper we study the so-called line-body component, which is a rigid sub-
assembly of a Stewart PM consisting of a linear motion platform (end-effector)
named ` and five SPS legs, where the base anchor points can have position in R3.
Here this component is referred to as linear pentapod, which is an alternative to
serial robots for handling axis-symmetric tools (see Fig. 1). Moreover we use the
following notations:

1. The position of ` is given by the vector p = (px, py, pz)
T and the orientation of `

is defined by a unit-vector i = (u,v,w)T .
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2 A. Rasoulzadeh and G. Nawratil

2. The coordinate vector b j of the platform anchor point of the jth leg is described
by the equation b j = p+ r ji for j = 1, . . . ,5.

3. The base anchor point of the j-th leg has coordinates a j = (x j,y j,z j)
T .

Note that all vectors are given with respect to a fixed reference frame, which can
always be chosen and scaled in a way that the following conditions hold:

x1 = y1 = z1 = y2 = z2 = z3 = 0 and x2 = 1. (1)

According to [13, Theorem 12] one possible point-model for the configuration
space C of the linear pentapod reads as follows: There exists a bijection between
C and all real points C = (u,v,w, px, py, pz) ∈ R6 located on the singular quadric
Γ : u2 + v2 +w2 = 1. Based on this notation we study the singularity loci of linear
pentapods and the distance to it in the paper at hand, which is structured as follows:

We close Section 1 by a review on the singularity analysis of linear pentapods
and recall the implicit equation of the singularity variety. In Section 2 we give a
brief introduction to rational varieties and present a rational parametrization of the
singularity loci of linear pentapods. In Section 3 we compute the minimal distance
to the singularity variety with respect to a novel metric in the ambient space R6

of the configuration space C . We also compute the closest singular configuration
under the constraint of a fixed orientation and a fixed position, respectively. Finally
a conclusion and a plan for future research is given.

`

Fig. 1 Linear pentapod with the following architectural parameters: a1 = (0,0,0)T , a2 =
(5,0,0)T , a3 = (−4,−3,0)T , a4 = (3,7,−6)T , a5 = (9,−5,4)T , (r1,r2,r3,r4,r5) = (0,2,4,5,10).
Moreover it should be noted that in the illustrated design the linear platform ` consists of five parts,
which are jointed by four passive rotational joints (a zoom of this detail is given in the box). This
construction enlarges the workspace by compensating some joint limits of the platform S-joints.
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1.1 Singularity Variety of the Pentapod
Singularity analysis plays an important role in motion planning of PMs. For linear
pentapods the singularities as well as the singular-invariant leg-rearrangements have
been studied in [5] for a planar base and in [3] for a non-planar one. A complete list
of architectural singular designs of linear pentapods is given in [14], where also
non-architecturally singular designs with self-motions are classified (see also [12]).

Kinematical singularities occur whenever the Jacobian matrix J becomes rank
deficient, where J can be written as follows (cf. [3]):

J=
(

l1 . . . l5
l̂1 . . . l̂5

)T

with l j =

px + r ju− x j
py + r jv− y j
pz + r jw− z j

 , l̂ j =

z j(py + r jv)− y j(pz + r jw)
x j(pz + r jw)− z j(px + r ju)
y j(px + r ju)− x j(py + r jv)

 .

This 5× 6 Jacobian matrix J has a rank less than five whenever the determinants
of all its 5× 5 sub-matrices vanish. So by naming the determinant of the 5× 5
sub-matrix, which results from excluding the jth column, with Fj the singularity
loci equals V (F1, . . . ,F6); i.e. the variety of the ideal spanned by the polynomials
F1, . . . ,F6. It can easily be checked by direct computations that this variety equals the
zero-set of the greatest common divisor F of F1, . . . ,F6. This singularity polynomial
F has the following structure:

F :=(A1 py +A2 pz)u2 +[(A3 px +A4 py +A5 pz +A6)v+(A7 px +A8 py

+A9 pz +A10)w+(A11 py +A12 pz)px +A13 py
2 +(A14 pz +A15)py

+A16 pz
2 +A17 pz]u+(A18 px +A19 pz +A20)v2 +[(A21 px +A22 py

+A23 pz +A24)w+A25 px
2 +(A26 py +A27 pz +A28)px +(A29 pz

+A30)py +A31 pz
2 +A32 pz]v+(A33 px +A34 py +A35)w2 +[A36 px

2

+(A37 py +A38 pz +A39)px +A40 py
2 +(A41 pz +A42)py +A43 pz]w

(2)

where the coefficients Ai belong to the ring R=R[x3,x4,x5,y3,y4,y5,z4,z5,r1, . . . ,r5]
which evidently makes F a polynomial with the total-degree of 3 belonging to
R[u,v,w, px, py, pz]. Note that for a specified orientation (u,v,w) the equation F = 0
determines only a quadric surface Ω(u,v,w) in the space of positions. This property
is of great importance later on.

Remark 1. It can easily be checked that the polynomial F is identical with the de-
terminant of a 7×7 matrix given in [3, Eq. (4)]. �

2 Rational Parametrization of the Singularity Variety
In this section we rationally parametrize the singularity variety, which is given by the
implicit equation F = 0. But before stepping into the computations, the presentation
of a formal definition of this parametrization seems necessary.
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Definition 1. Let K be a field and V ⊂ Km and W ⊂ Kn be irreducible affine vari-
eties. A rational mapping from V to W is a function φ represented by

φ : V 99KW with φ(x1, . . . ,xm) =

(
f1(x1, . . . ,xm)

g1(x1, . . . ,xm)
, . . . ,

fn(x1, . . . ,xm)

gn(x1, . . . ,xm)

)
(3)

where fi
gi
∈K(x1, . . . ,xm) and satisfies the following properties:

1. φ is defined at some point of V .
2. For every (a1, . . .am) ∈V where φ is defined, φ(a1, . . .am) ∈W .

Definition 2. Two irreducible varieties V and W are said to be birationally equiva-
lent if there exist rational mappings φ : V 99K W and ψ : W 99K V such that φ ◦ψ

and ψ ◦φ be equal to idW and idV respectively.

Definition 3. A rational variety is a variety that is birationally equivalent to Kn.

One can find the extensive discussion of above definitions in [16, Chapters 1 and 2].
Having a rational parametrization of a variety has numerous advantages: If the

coefficients of the polynomials fi and gi of Eq. (3) belong to Q and if (x1, . . . ,xm) is
an element of Qm, then one obtains points with rational coordinates on the singular-
ity variety [16, page 3]. This is a matter, which is of high importance to computer
aided designs, as computers can calculate rational coordinates at a much faster rate.

Moreover the rationality of the singularity variety implies that it is path con-
nected, which means that every singular pose can be connected to any other singular
pose by a continuous singular motion [7]. This property can be used for a compu-
tationally efficient approximation of the singularity-free workspace by hierarchical
structured hyperboxes, where only their boundaries have to be checked to be free of
singularities. Beside the rationally parametrized singularity loci of the planar 3-RPR
PM [7], only the one of Stewart PMs with planar platform and planar base [6] (see
also [1, 2]) are known to the authors (in the context of PMs of Stewart-Gough type).

For the computation of the rational parametrization of the linear pentapod, we
exploit the idea used in [6]: By homogenizing the singularity polynomial F of Eq.
(2) by the extra variable p0 with respect to the position variables px, py and pz, we
obtain a homogeneous polynomial Fh ∈ R(u,v,w)[px, py, pz, p0] in the projective 3-
space P3 with homogeneous coordinates (px : py : pz : p0). It turns out that the point
B with homogeneous coordinates (u : v : w : 0) is a point of the singularity variety;
i.e. B ∈ V(Fh) ⊂ P3. Note that B is the ideal point of the linear platform ` with
orientation vector i.

The side condition on the vector i= (u,v,w)T to be of unit-length, can be avoided
by using the stereographic parametrization of the unit-sphere S2:

x : (t3, t4) 7→
(

2 t3
t32 + t42 +1

,
2 t4

t32 + t42 +1
,
t32 + t42−1
t32 + t42 +1

)
. (4)

Based on this we can parametrize the lines of the bundle B with vertex B in the
finite space R3 of positions with coordinates (px, py, pz) as follows:
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B :

 px
py
pz

= ax(t3, t4)+ t1
∂x(t3, t4)

∂ t3
+ t2

∂x(t3, t4)
∂ t4

. (5)

Note that the bituple (t1, t2) fixes the line of the bundle B and the parameter a
determines the point on this line. By varying (t1, t2) ∈ R2 and setting a = 0 one
obtains the plane through the origin, which is orthogonal to i.

Plugging B(a, t1, t2, t3, t4) into F = 0 shows that the resulting expression is only
linear in a, as the ideal point B is always one of the two intersection points of a
line belonging to B with the quadric Ω(x(t3, t4)). By solving this linear condition
we get a(t1, t2, t3, t4). Now the singular configurations X = (ξ1, . . . ,ξ6) ∈ R6 of the
linear pentapod can be rationally parametrized by (ξ1,ξ2,ξ3) := x(t3, t4) and

ξ4 = 2
a(t1, t2, t3, t4) t3

t32 + t42 +1
−2

t1
(
t32− t42−1

)
(t32 + t42 +1)2 −4

t2 t3 t4
(t32 + t42 +1)2 ,

ξ5 = 2
a(t1, t2, t3, t4) t4

t32 + t42 +1
−4

t1 t3 t4
(t32 + t42 +1)2 +2

t2
(
t32− t42 +1

)
(t32 + t42 +1)2 ,

ξ6 =
a(t1, t2, t3, t4)

(
t32 + t42−1

)
t32 + t42 +1

+4
t1t3

(t32 + t42 +1)2 +4
t2t4

(t32 + t42 +1)2 .

(6)

This parametrization covers the singular variety with exception of two low-dim-
ensional sub-variety: A missing 3-dimensional sub-variety is defined by the denom-
inator of a(t1, t2, t3, t4). In this case the residual intersection point ∈ R3 of the line
belonging to B with Ω(x(t3, t4)) is not determined uniquely; i.e. the complete line
belongs to Ω(x(t3, t4)). As the orientation (0,0,1) cannot be obtained by the stere-
ographic parametrization, also the 2-dimensional sub-variety Ω(0,0,1) is missing.

Moreover for a given singular pose X = (ξ1, . . . ,ξ6) ∈ R6 we can trivially com-
pute t1, . . . , t4 in a rational way from ξ1, . . . ,ξ6, thus the singularity variety is a ra-
tional one (according to the Definitions 1, 2 and 3).

3 Distance to the Singularity Variety
In singularities the number of DOFs of the mechanism changes instantaneously and
becomes uncontrollable. Additionally the actuator forces can become very large and
cause the break down of the platform [10]. Henceforth knowing the distance of a
given pose G= (g1, . . . ,g6)∈R6 from the singularity variety is of great importance.

Fixed Orientation: We ask for the closest singular configuration O having the
same orientation (g1,g2,g3) as the given pose G. As G and O only differ by a
translation, we can define the distance between these two poses by the length of
the translation vector. Therefore O has to be a pedal-point on Ω(g1,g2,g3) with
respect to the point (g4,g5,g6). The set O of all these pedal-points equals the variety
V ( ∂L

∂ px
, ∂L

∂ py
, ∂L

∂ pz
, ∂L

∂λ
) where λ is the Lagrange multiplier of the Lagrange equation
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Ω
ω

Fig. 2 Illustrations are done for G = ( 3
5 ,

4
5 ,0,2,3,4) of the linear pentapod displayed in

Fig. 1. Fixed orientation (Left): O has only four real solutions where the closest one O =
( 3

5 ,
4
5 ,0,2.5517,2.6374,0.1144) has a distance of 3.9412 units. Fixed position (right): P has only

two real solutions where the closest one P = (0.3701,0.5523,0.7468,2,3,4) has a spherical dis-
tance of 48.4178◦.

L(px, py, pz,λ ) = (px−g4)
2 +(py−g5)

2 +(pz−g6)
2 +λF. (7)

It is well known (see [15, Appendix A]) that in general O consists of six points over
C, where the closest one to (g4,g5,g6) implies O (see Figs. 2 and 3).

Fixed Position: Now we ask for the closest singular configuration P, which has
the same position (g4,g5,g6) as the given pose G. As G and P only differ in ori-
entation, the angle ∈ [0,π] enclosed by these two directions can be used as distance
function. Note that this angle is the spherical distance function on S2.

By intersecting the singularity surface for the given position (g4,g5,g6) with S2

we obtain a spherical curve ω(g4,g5,g6) of degree 4. Then P has to be a spherical
pedal-point on ω(g4,g5,g6) with respect to the point (g1,g2,g3)∈ S2 (see Fig. 2). By
replacing the underlying spherical distance by the Euclidean metric of the ambient
space R3, one will not change the set P of pedal-points on ω(g4,g5,g6) with respect
to (g1,g2,g3). Therefore P can be computed as the variety V ( ∂L

∂u ,
∂L
∂v ,

∂L
∂w ,

∂L
∂λ1

, ∂L
∂λ2

)

where λ1 and λ2 are the Lagrange multipliers of the Lagrange equation

L(u,v,w,λ1,λ2) = (u−g1)
2 +(v−g2)

2 +(w−g3)
2 +λ1F +λ2G (8)

with G = u2 + v2 +w2− 1. It can easily be proved (see [15, Appendix B]) that in
general P consists of 8 points over C, where the one with the shortest spherical
distance to (g4,g5,g6) implies P (see Fig. 3).

Remark 2. For the practical application of this spherical distance to the singularity,
we recommend to locate the position vector p in the tool-center-point of `. �Author's
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P

M

G

O

Fig. 3 Comparison of the different configurations G (green), O (blue), P (yellow) and the red-
colored M= (0.5559,0.7274,0.4021,2.2966,3.4794,1.8357) with d(M,G) = 1.4791. In contrast
d(O,G) = 3.9412 and d(P,G) = 4.4142. For this example only 16 out of 80 pedal-points are real.

General Case: In contrast to the two special cases discussed above, the general
case deals with mixed (translational and rotational) DOFs, thus the question of a
suitable distance function arises. As the configuration space C equals the space of
oriented line-elements, we can adopt the object dependent metrics discussed in [13]
for our mechanical device as follows:

d(L,L
′
)2 :=

1
5

5

∑
j=1
‖b j−b

′
j‖

2
(9)

where L and L
′

are two configurations and b j and b′j denote the coordinate vectors
of the corresponding platform anchor points. Note that the ambient space R6 (of C )
equipped with the metric d of Eq. (9) is a Euclidean space (cf. [13]).

With respect to this metric d we can compute the closest singular configuration
M to G in the following way: We determine the set M of pedal-points on the singu-
larity variety with respect to G as the variety V ( ∂L

∂u ,
∂L
∂v ,

∂L
∂w ,

∂L
∂ px

, ∂L
∂ py

, ∂L
∂ pz

, ∂L
∂λ1

, ∂L
∂λ2

)

where λ1 and λ2 are the Lagrange multipliers of the Lagrange equation

L(u,v,w, px, py, pz,λ1,λ2) := d(M,G)2 +λ1G+λ2F. (10)

Random examples (see [15, Appendix C]) indicate that M consists of eighty points
over C, where the one with the shortest distance d to G equals M (see Fig. 3).

Remark 3. Note that these minimal distances can be seen as the radii of maximal
singularity-free hyperspheres [10] in the position workspace (see also [11]), the ori-
entation workspace (see also [8]) and the complete configuration space. Moreover
the distance d(M,G) to the singularity variety can also be interpreted as quality
index thus it is an alternative to the value of F proposed in [4]. �
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4 Conclusions and future research
We presented a rational parametrization of the singularity variety of linear pentapods
in Section 2 and computed the distance to it in Section 3 with respect to the novel
metric given in Eq. (9), which can easily be adopted for e.g. Stewart PMs as well.
As this distance is of interest for many tasks (e.g. quality index for path planning,
radius of the maximal singularity-free hypersphere, . . . ) a detailed study of it (e.g.
efficient computation of M, proof of #M = 80, . . . ) is dedicated to future research.
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