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Abstract. Different motion modes of mechanisms often correspond to irreduci p S
of the configuration space (c-space), and singularities of the c-space often ( ily)
happen at the intersections of irreducible components, i.e. motion mode; uration

space. Frequently mechanisms are required to perform different tasks on ent motin modes of
the mechanism connected by c-space singularities. This means that in
switch between motion modes it has to pass through a c-space si ugh singularities
may not be avoided, it is desirable to design the mechanism i a wg¥ that the transition
motion through the singularity is as smooth as possible. In thig p we propose using the theory
of intersections of algebraic varieties as a tool from algebrai®geo that allows investigating
this situation. Modern computational algebra provide necgssary algorithms. The theory and
its implications are demonstrated for two simple examples.

"G

1 Introduction

ric constraints can be de
generate the it i
the c-space {s

tive algebrayprovi framework for the analysis, and potentially the design, of the
c-space. Th S paper is to recall the relevant concepts from algebraic ge-
ometry fgilita e analysis of c-space singularities of mechanisms and robots.

omputational tools to analyze c-space singularities.

es impairing their stability and making their control difficult. However
anism contains closed loops and is designed to go from one motion mode
to anéther it has to go through a singularity. Also the simulation of the mechanism
namics becomes difficult since standard numerical integration methods for dif-
erential algebraic (DAE) system can not handle singularities. In fact these types of
mechanisms and their constraints are often used when testing and comparing dif-
ferent DAE-solvers [7]. If a mechanism is to perform several tasks where each one
corresponds to irreducible components/motion modes V; of the c-space variety V,
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then the mechanism must pass through a c-space singularity. It is thus important that
the singularities and their nature are known a priori. An interesting question in this
regard is whether there are tangential intersections of motion modes that allow for
smooth transitions between different modes [1, 12].

To study these questions we propose to use the concept of multiplicity. If at a
point in the intersection of two varieties the multiplicity of intersection is greater
than one, then at the intersection there are at least some common tangent direction
to both varieties, and hence a smooth transition between different modes is possible
at least in principle. From an engineering perspective it would be desirable to be able
to design regular/tangential intersections of mechanisms performing tasks in several
motion modes that are connected by singularities since then the mechanism wou
not have to stop at singularity in order to change to another motion mode. Angther
interesting aspect about multiplicity is that it may provide a good quantitativg
of what has been intuitively called the shakiness of the mechanism. THis,asp
be treated more thoroughly in a forthcoming paper. A similar approac :
in [14]. The singularity analysis is therefore particularly importangbut at ame

time also a difficult area of mechanism design [2, 3, 8, 13, 11 ¢ fdvantage

of using algebraic geometry instead of the differential geom app is that in
algebraic geometry one can obtain global as well as localg
Computations in this paper were performed with the @ am Fingular [10].

2 Mathematical Preliminaries

2.1 Rings, Ideals and Singbqu ]

We recall some basic facts a er to [5, 9] for more details. The polynomial

ring with coefficient field/Raad v les x; is denoted by A = K[xj,...,x,]. The
@ A'in A are fundamental

following facts about ide
enerated, i.e. it has a basis with a finite number of gener-

ators
(ii)Every ra; n be decomposed to a finite number of prime ideals: This
gives the de sition of the variety into irreducible components:

V(F)=V(VI)=V(I)U---UV(I).

ition 2.1 (Tangent space) Ler .% = (fi,..., fx) be an ideal and let us denote
f1s---, fx) the map defined by the generators. The differential (or Jacobian)
of f is then denoted by df, and its value at q is df,. Let us suppose that .5 is a
ime ideal. Then the tangent space of the variety V =\ (%) at q is

T,V ={ze€K"|df,;z=0}. ey

Note that by definition 7,V is a vector space, so its dimension is well defined.
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Definition 2.2 (Singular points) A point g € V is singular if dim(7,V') > dim, (V).
Otherwise the point q is regular. The set of singular points of V is denoted by Z(V).

Recall that X(V) is itself a variety whose dimension is less than dim(V'). Hence
almost all points of a variety are regular.

Throughout the paper the constraint ideal (the ideal associated with the con-
straints) is assumed to be prime.

LetV =V U---UV, be the decomposition to irreducible components. Then there
are basically two ways of a point g of a general variety V to be singular: either g

is a singularity of an irreducible component V; or it is an intersection point of two
components. That is, the variety of singular points is
4
rvy=Jzwulvinv;. ° @

i=1 ij

Once we have the irreducible decomposition it is easy to com the sec-
tions (the second term in (2)). To compute the singular points ofgi ompo-
nents (the first term in (2)) one needs the concept of Fitting i

Let M be a matrix of dimension k X n with entries in
M, Fy(M), is the ideal generated by the £ x ¢ minors of
K" — KK be a map corresponding to the prime ide (fi..., fx)and let V =
V(.#) be the corresponding irreducible variety. Let u§ suppose that dim(V) =n—¢.

Theorem 2.1 (Jacobian criterion) The singular v of Vis
(V) :v(ﬁ{((d (#) NV (Fe(df)).

In particular if 7 +Fy(df) = A fhen V is\wflooth.
even locally Euclidean. If g is a smooth point then

) O
% an be thought of as the best local approximation.
vesriced the concept of tangent cone [4, 15]. Let us sup-

en each polynomial f € [(V) can be written as a sum

igty ’look like’ locally. Unlike manifolds vari-

Cq(V) = V(f(q,min) | fe I<V)) (3)
The tangent cone has the following basic properties:

e g is a smooth point if and only if C,V = T,V
e dim(C,V) =dimy(V).
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The tangent cone is the simplest possible approximation of V in the neighbor-
hood of ¢ and thus dim(C,V) = dim, (V). The generators of the tangent cone can be
obtained efficiently using Grobner basis techniques.

2.2 Intersection Multiplicity and Singular Points

Let ¢ be a point of a subvariety V C K. We denote by Oy, the local ring of V at

g. Consider an ideal .# C Oy 4 with dimg (0y,4/.#) < oo. Then the Hilbert-Samuel
function of . is
Hj(n) :dlmK(ﬁVq/f") (I’ZEN)

It is known that there exists a polynomial Py (n) such that H »(n) and P4
incide for large n. This polynomial is called the Hilbert- Samuel polyn al
is of degree d = dim Oy,. The leading coefficient is e(.#)/d!, w
integer. We say that e(.#) is the Hilbert-Samuel multiplicity of .#|

Let V;,V, C K" be subvarieties. Then one can define the in ction multiplicity
of V| and V, at an irreducible component of the intersection V4 strict to the
special case where the irreducible component is a p01 The definition
is based on the idea of ’reduction to the diagonal’ @d fine the diagonal
embedding and the ideal corresponding to it:

A KP—-K'x K" | al, an,al7 an)
8:(351*)’1,---,35;1

In this way we have an isomorphisn©V; ¥, =JA (K") N (V} x V,). We now consider
 as an ideal of the local ring &

V27(qﬂq) :

Definition 2.4 (Intersecti ultiplicity) The intersection multiplicity of V| and

Vo atqis
g(V1i,V2) = e(8). (&)
A fundamen onnecting multiplicities of points of V to its tangent
cone says he nt cone C,;V and the variety V have the same multiplicity
at g. The ta tc gives the geometric picture of the variety near its singular

points.

ybner Basts techniques can be extended to local rings, hence the multiplic-
ity can ly be computed. The drawback with this approach is that the number

iables is artificially doubled, making the computations potentially very time
ing. However, it is possible to do the computations in such a way that this
inconvenience is avoided. This will be explored in another paper.
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3 Examples

3.1 Slider-crank mechanism with circular constraints

Figure 1a) shows a planar slider-crank mechanism whose slider is constrained to
move on the union of two circles with radius 1/2 and centers at (1,1/2) and
(1,—1/2), respectively (This can also be regarded as a planar 2R serial manip-
ulator that must perform motion on the circles). The constraint equations are

pi=0,i=1...5 where
— _ _ 2,2 q1_ _ 2,2
pr=cito—x, pp=si+—y, p3=ci+si—1=0,ps=c3+s;—1 Q
ps = (= 177+ (= 1127 = 1/4)((e= 17+ (4 1/2 = 14 Q
where s§; := sinx;,c; := cosx;. The equation ps = 0 restricts the slide
the circles. Analyzing the constraint ideal .% = (p1, p2, p3, p4, Ps) ds

I =VvSI = ejl 0/2 C Q[C17517027S27x
The singular points of V(.#) are the intersections of t odeSPV(.#1) = Vi and

V(.#,) = V, which represent the motion where theye fecgor is constrained to
gves that both modes,

move on either circles. Checking the Jacobian cfit&rio

) b)

Fig. 1 a) Slider-Crank mechanism with circular constraints. b) 4-bar linkage with equal link
lengths
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Z(V) = V(ﬂ] N fz) = V(ﬂ] + fz)

=V(yx—1,455—3,2c0— Ls+s2,c1 +c2— 1) =q4 U g

where g+ = (1/2,%v/3/2,1/2,4+/3/2,1,0). Now we make a coordinate transfor-
mation so that g is the origin and then double the number of variables. In this way
the ideals corresponding to .#; and .%, to can be written as

it = (b1 +by—y1,a1 +a— 21,51 +21 — 1,
2bayy +2ax21 +2a; — (V3+ 1)y — 21,05 + b3+ ay — v/3by)
ir = (e1+ex—ya2,di +dr—22,Y* + 23+ 2,
20292 +2dy +2dy — (V3= 1)yy —22,d5 + &5+ d —‘5€2>
Hence the sum _# = ij + i is an ideal in the ring \
A= Q(\/g)[al,b],az,b27d1781,d2,€2,Z1,y1,Z2
Let us now consider the quotient ring A/ J correspondi the “variety V =
V(_#). This construction is needed when one does act putgtions in the local
ring Oy, Hence the ideal in definition 2.4 is now a rejed as

0 =(a1—di,bi —e1,a0—do, by — el W}, 21 —22) CA/ 7.

The Hilbert polynomial of § is now Pj
ig. (V1,V2) = 2. Since V| and Vgare
of modes V| and V; at ¢4.

The tangent cone at g can befédmpute

= 1+ 2n and hence the multiplicity is
e must have tangential intersection

S

CoV = V(a) +ar — z, ysig — 24> —z— /3,60, — /32— 3y,y*) = (L1)*

and indicate result, i.e. that the multiplicity is two.

Fo ar mechanism with equal link lengths

The constraint equations for the mechanism in figure 1b) can be formulated by using
int 4 as cut-joint as

pi=ci+ca+c3—1=0, ps=s1+s20+53=0
pi=ci4st—1, i=1,273.
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Analyzing the constraint ideal .# = (py, p2, p3, pa, ps) leads to
f =V j == Va] r-]ﬂ20<%3 (- Q[C],S],CZ,S2,C3,S3].

The singular points are again intersections of three smooth motion modes V(.97),
V(#,) and V(.#3). The singular points then consists of three points:

Z(V)=V(ANAHLNI) =V(A+ L +5)={q0,91,92}

The mechanism is, for example, analyzed at the point
q0=(1,0,—1,0,1,0) =V () NV(FH) =V NV,. Q
A coordinate transformation such that g is the origin yields the idea&
it = (a3 + b3 —2a,b3,a3,by + by + b3, a; +ax +az) \
i = (d3 + €5 +2e3,dr +ds,er + e3,dy +dy +di, e +e%
su

corresponding to .#| and .%, after the transformation. As abo, e
is considered in the ring

A= Q[alab17a23b27a37b37d1ae

=i1+ip

H, &hd3

and then we need to consider the quotient ri
obtain in this case iz, (V1,V2) = 1. Hence the inters
case as expected. If we compute the tang

. Computing as before we
ion is not tangential in this
cone at go we get

CqOV = V(a1 +ar +a3,b1 =+ b3, bas,2bybs +2b%)
=V(ai,by +bs,az, YUV (a1,b1,by,a3,b+b3) =L UL, C R

ity to treat the c-spaces of mechanisms and robots as algebraic varieties
has many advantages. Most importantly essential properties, like singularities and
obility, can be algorithmically computed and possibly designed. In this paper we
have introduced the concept of intersection multiplicity in order to investigate the
“order of tangency’ of intersections of different motion modes of a mechanism. This
is demonstrated for two simple examples. The presented method has been applied
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to larger systems as well that cannot be presented here. It was observed that the
complexity scales up well. Tangential intersections in particular are of practical im-
portance since a mechanism could transit regularly between motion modes, i.e. not
have to stop when switching between motion modes, which also reduces constraint
forces.
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