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Abstract. Different motion modes of mechanisms often correspond to irreducible components
of the configuration space (c-space), and singularities of the c-space often (but not necessarily)
happen at the intersections of irreducible components, i.e. motion modes, of the configuration
space. Frequently mechanisms are required to perform different tasks on different motion modes of
the mechanism connected by c-space singularities. This means that in order for the mechanism to
switch between motion modes it has to pass through a c-space singularity. Although singularities
may not be avoided, it is desirable to design the mechanism in such a way that the transition
motion through the singularity is as smooth as possible. In this paper we propose using the theory
of intersections of algebraic varieties as a tool from algebraic geometry that allows investigating
this situation. Modern computational algebra provides the necessary algorithms. The theory and
its implications are demonstrated for two simple examples.

1 Introduction

Most mechanisms comprise ’algebraic joints’, i.e. kinematic pairs whose geomet-
ric constraints can be described by polynomial equations f1 = 0, . . . , fk = 0. These
generate the constraint ideal I = 〈 f1, . . . , fk〉 ⊂ A in the polynomial ring A. Thus
the c-space is an algebraic variety V(I ), and algebraic geometry and commuta-
tive algebra provide a framework for the analysis, and potentially the design, of the
c-space. The goal of this paper is to recall the relevant concepts from algebraic ge-
ometry facilitating the analysis of c-space singularities of mechanisms and robots.
This gives us computational tools to analyze c-space singularities.

In general singularities are not desirable since the differential mobility of a mech-
anism changes impairing their stability and making their control difficult. However
if a mechanism contains closed loops and is designed to go from one motion mode
to another it has to go through a singularity. Also the simulation of the mechanism
dynamics becomes difficult since standard numerical integration methods for dif-
ferential algebraic (DAE) system can not handle singularities. In fact these types of
mechanisms and their constraints are often used when testing and comparing dif-
ferent DAE-solvers [7]. If a mechanism is to perform several tasks where each one
corresponds to irreducible components/motion modes Vi of the c-space variety V,
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then the mechanism must pass through a c-space singularity. It is thus important that
the singularities and their nature are known a priori. An interesting question in this
regard is whether there are tangential intersections of motion modes that allow for
smooth transitions between different modes [1, 12].

To study these questions we propose to use the concept of multiplicity. If at a
point in the intersection of two varieties the multiplicity of intersection is greater
than one, then at the intersection there are at least some common tangent direction
to both varieties, and hence a smooth transition between different modes is possible
at least in principle. From an engineering perspective it would be desirable to be able
to design regular/tangential intersections of mechanisms performing tasks in several
motion modes that are connected by singularities since then the mechanism would
not have to stop at singularity in order to change to another motion mode. Another
interesting aspect about multiplicity is that it may provide a good quantitative model
of what has been intuitively called the shakiness of the mechanism. This aspect will
be treated more thoroughly in a forthcoming paper. A similar approach is used also
in [14]. The singularity analysis is therefore particularly important, but at the same
time also a difficult area of mechanism design [2, 3, 8, 13, 11, 16]. The advantage
of using algebraic geometry instead of the differential geometric approach is that in
algebraic geometry one can obtain global as well as local results.

Computations in this paper were performed with the program Singular [10].

2 Mathematical Preliminaries

2.1 Rings, Ideals and Singularities

We recall some basic facts and refer to [5, 9] for more details. The polynomial
ring with coefficient field K and variables xi is denoted by A = K[x1, . . . ,xn]. The
following facts about ideals I ⊂ A in A are fundamental

(i) Every ideal is finitely generated, i.e. it has a basis with a finite number of gener-
ators.

(ii)Every radical ideal can be decomposed to a finite number of prime ideals: This
gives the decomposition of the variety into irreducible components:

V(I ) = V(
√

I ) = V(I1)∪·· ·∪V(Is).

Definition 2.1 (Tangent space) Let I = 〈 f1, . . . , fk〉 be an ideal and let us denote
by f = ( f1, . . . , fk) the map defined by the generators. The differential (or Jacobian)
of f is then denoted by d f , and its value at q is d fq. Let us suppose that I is a
prime ideal. Then the tangent space of the variety V = V(I ) at q is

TqV = {z ∈Kn |d fqz = 0}. (1)

Note that by definition TqV is a vector space, so its dimension is well defined.
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Definition 2.2 (Singular points) A point q ∈V is singular if dim(TqV )> dimq(V ).
Otherwise the point q is regular. The set of singular points of V is denoted by Σ(V ).

Recall that Σ(V ) is itself a variety whose dimension is less than dim(V ). Hence
almost all points of a variety are regular.

Throughout the paper the constraint ideal (the ideal associated with the con-
straints) is assumed to be prime.

Let V =V1∪·· ·∪V` be the decomposition to irreducible components. Then there
are basically two ways of a point q of a general variety V to be singular: either q
is a singularity of an irreducible component Vi or it is an intersection point of two
components. That is, the variety of singular points is

Σ(V ) =
⋃̀
i=1

Σ(Vi)∪
⋃
i6= j

Vi∩Vj. (2)

Once we have the irreducible decomposition it is easy to compute the intersec-
tions (the second term in (2)). To compute the singular points of irreducible compo-
nents (the first term in (2)) one needs the concept of Fitting ideals [9].

Let M be a matrix of dimension k×n with entries in A. The `th Fitting ideal of
M, F`(M), is the ideal generated by the `×` minors of M. Let now f = ( f1, . . . , fk) :
Kn 7→ Kk be a map corresponding to the prime ideal I = 〈 f1, . . . , fk〉 and let V =
V(I ) be the corresponding irreducible variety. Let us suppose that dim(V ) = n−`.

Theorem 2.1 (Jacobian criterion) The singular variety of V is

Σ(V ) = V
(
I +F`(d f )

)
= V

(
I
)
∩ V

(
F`(d f )

)
.

In particular if I +F`(d f ) = A then V is smooth.

One can now ask how does the variety ’look like’ locally. Unlike manifolds vari-
eties don’t have to be smooth or even locally Euclidean. If q is a smooth point then
naturally the tangent space TqV can be thought of as the best local approximation.
In case of singular points we need the concept of tangent cone [4, 15]. Let us sup-
pose that q is the origin. Then each polynomial f ∈ I(V ) can be written as a sum
of its homogeneous components. Let us denote by f(q,min) the component of lowest
degree.

Definition 2.3 (Tangent cone) Suppose that V(I ) ⊂ Rn is an algebraic variety
and I = 〈h1, . . . ,hl〉 and let q ∈V . The Tangent cone of V at q, denoted by Cq(V ),
is the variety

Cq(V ) = V( f(q,min) | f ∈ I(V )). (3)

The tangent cone has the following basic properties:

• q is a smooth point if and only if CqV = TqV
• dim(CqV) = dimq(V).
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The tangent cone is the simplest possible approximation of V in the neighbor-
hood of q and thus dim(CqV) = dimq(V). The generators of the tangent cone can be
obtained efficiently using Gröbner basis techniques.

2.2 Intersection Multiplicity and Singular Points

Let q be a point of a subvariety V ⊂ Km. We denote by OV,q the local ring of V at
q. Consider an ideal I ⊂ OV,q with dimK(OV,q/I )< ∞. Then the Hilbert-Samuel
function of I is

HI (n) = dimK(OV,q/I
n) (n ∈ N). (4)

It is known that there exists a polynomial PI (n) such that HI (n) and PI (n) co-
incide for large n. This polynomial is called the Hilbert-Samuel polynomial of I. It
is of degree d = dimOV,q. The leading coefficient is e(I )/d!, where e(I ) is an
integer. We say that e(I ) is the Hilbert-Samuel multiplicity of I .

Let V1,V2 ⊂Kn be subvarieties. Then one can define the intersection multiplicity
of V1 and V2 at an irreducible component of the intersection V1∩V2. We restrict to the
special case where the irreducible component is a point q ∈ V1∩V2. The definition
is based on the idea of ’reduction to the diagonal’ [6]. Let us define the diagonal
embedding and the ideal corresponding to it:

∆ : Kn→Kn×Kn , (a1, . . . ,an) 7→ (a1, . . . ,an,a1, . . . ,an)

δ = (x1− y1, . . . ,xn− yn)⊂K[x,y] , V(δ ) = ∆(Kn)

In this way we have an isomorphism V1∩V2 ∼= ∆(Kn)∩ (V1×V2). We now consider
δ as an ideal of the local ring OV1×V2,(q,q).

Definition 2.4 (Intersection multiplicity) The intersection multiplicity of V1 and
V2 at q is

iq(V1,V2) = e(δ ) . (5)

A fundamental theorem connecting multiplicities of points of V to its tangent
cone says that the tangent cone CqV and the variety V have the same multiplicity
at q. The tangent cone gives the geometric picture of the variety near its singular
points.

Gröbner basis techniques can be extended to local rings, hence the multiplic-
ity can actually be computed. The drawback with this approach is that the number
of variables is artificially doubled, making the computations potentially very time
consuming. However, it is possible to do the computations in such a way that this
inconvenience is avoided. This will be explored in another paper.Author's
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3 Examples

3.1 Slider-crank mechanism with circular constraints

Figure 1a) shows a planar slider-crank mechanism whose slider is constrained to
move on the union of two circles with radius 1/2 and centers at (1,1/2) and
(1,−1/2), respectively (This can also be regarded as a planar 2R serial manip-
ulator that must perform motion on the circles). The constraint equations are
pi = 0, i = 1 . . .5 where

p1 = c1 + c2− x, p2 = s1 + s2− y, p3 = c2
1 + s2

1−1 = 0, p4 = c2
2 + s2

2−1

p5 = ((x−1)2 +(y−1/2)2−1/4)((x−1)2 +(y+1/2)2−1/4)

where si := sinxi,ci := cosxi. The equation p5 = 0 restricts the slider to move on
the circles. Analyzing the constraint ideal I = 〈p1, p2, p3, p4, p5〉 yields

I =
√

I = I1∩I2 ⊂Q[c1,s1,c2,s2,x,y]

The singular points of V(I ) are the intersections of two modes V(I1) = V1 and
V(I2) = V2 which represent the motion where the end effector is constrained to
move on either circles. Checking the Jacobian criterion proves that both modes,
V(I1) and V(I2), are smooth. The singular points are thus

a)

x

y P = (1,1/2)

P = (1,-1/2)

1

2
1

b)

4 1

23

Fig. 1 a) Slider-Crank mechanism with circular constraints. b) 4-bar linkage with equal link
lengths
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Σ(V ) = V(I1∩I2) = V(I1 +I2)

= V(y,x−1,4s2
2−3,2c2−1,s1 + s2,c1 + c2−1) = q+∪ q−

where q± = (1/2,∓
√

3/2,1/2,±
√

3/2,1,0). Now we make a coordinate transfor-
mation so that q+ is the origin and then double the number of variables. In this way
the ideals corresponding to I1 and I2 to can be written as

i1 = 〈b1 +b2− y1,a1 +a2− z1,y2
1 + z2

1− y1,

2b2y1 +2a2z1 +2a2− (
√

3+1)y1− z1,a2
2 +b2

2 +a2−
√

3b2〉
i2 = 〈e1 + e2− y2,d1 +d2− z2,y2 + z2

2 + y2,

2e2y2 +2d2z2 +2d2− (
√

3−1)y2− z2,d2
2 + e2

2 +d2−
√

3e2〉

Hence the sum J = i1 + i2 is an ideal in the ring

A=Q(
√

3)[a1,b1,a2,b2,d1,e1,d2,e2,z1,y1,z2,y2]

Let us now consider the quotient ring A/J corresponding to the variety V =
V(J ). This construction is needed when one does actual computations in the local
ring OV,q. Hence the ideal in definition 2.4 is now also interpreted as

δ = 〈a1−d1,b1− e1,a2−d2,b2− e2,y1− y2,z1− z2〉 ⊂ A/J .

The Hilbert polynomial of δ is now Pδ (n) = 1+ 2n and hence the multiplicity is
iq+(V1,V2) = 2. Since V1 and V2 are smooth we must have tangential intersection
of modes V1 and V2 at q+.

The tangent cone at q+ can be computed as

C0V = V(a1 +a2− z,b1 +b2− y,2a2− z−
√

3y,6b2−
√

3z−3y,y2) = (L1)
2

which is a ’doubled’ tangent line y2 = 0 in the plane

T = V(6b2−
√

3z,2a2− z,6b1 +
√

3z,2a1− z),

and indicates the same result, i.e. that the multiplicity is two.

3.2 Four-Bar mechanism with equal link lengths

The constraint equations for the mechanism in figure 1b) can be formulated by using
joint 4 as cut-joint as

p4 = c1 + c2 + c3−1 = 0, p5 = s1 + s2 + s3 = 0

pi = c2
i + s2

i −1, i = 1,2,3.
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Analyzing the constraint ideal I = 〈p1, p2, p3, p4, p5〉 leads to

I =
√

I = I1∩I2∩I3 ⊂Q[c1,s1,c2,s2,c3,s3].

The singular points are again intersections of three smooth motion modes V(I1),
V(I2) and V(I3). The singular points then consists of three points:

Σ(V ) = V(I1∩I2∩I3) = V(I1 +I2 +I3) = {q0,q1,q2}.

The mechanism is, for example, analyzed at the point

q0 = (1,0,−1,0,1,0) = V(I1)∩V(I2) =V1∩V2.

A coordinate transformation such that q0 is the origin yields the ideals

i1 = 〈a2
2 +b2

2−2a2,b3,a3,b1 +b2 +b3,a1 +a2 +a3〉
i2 = 〈d2

3 + e2
3 +2e3,d2 +d3,e2 + e3,d1 +d2 +d3,e1 + e2 + e3〉,

corresponding to I1 and I2 after the transformation. As above the sum J = i1+ i2
is considered in the ring

A=Q[a1,b1,a2,b2,a3,b3,d1,e1,d2,e2,d3,e3]

and then we need to consider the quotient ring A/J . Computing as before we
obtain in this case iq0(V1,V2) = 1. Hence the intersection is not tangential in this
case as expected. If we compute the tangent cone at q0 we get

Cq0V = V(a1 +a2 +a3,b1 +b2 +b3,2a2,2a3,2b2b3 +2b2
3)

= V(a1,b1 +b2,a2,a3,b3)∪V(a1,b1,b2,a3,b2 +b3) = L1∪L2 ⊂ R6

Now L1 and L2 clearly represent two different lines in R6:

L1∪L2 = {t(0,−1,0,1,0,0) | t ∈ R}∪{t(0,0,0,1,0,−1) | t ∈ R}

The lines intersect at a nonzero angle which implies that multiplicity is one.

4 Conclusion

The ability to treat the c-spaces of mechanisms and robots as algebraic varieties
has many advantages. Most importantly essential properties, like singularities and
mobility, can be algorithmically computed and possibly designed. In this paper we
have introduced the concept of intersection multiplicity in order to investigate the
’order of tangency’ of intersections of different motion modes of a mechanism. This
is demonstrated for two simple examples. The presented method has been applied
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to larger systems as well that cannot be presented here. It was observed that the
complexity scales up well. Tangential intersections in particular are of practical im-
portance since a mechanism could transit regularly between motion modes, i.e. not
have to stop when switching between motion modes, which also reduces constraint
forces.
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