
1 

A Study on Constraints Violation in Dynamic 

Analysis of Spatial Mechanisms 

P. Flores1 

1 Department of Mechanical Engineering – University of Minho – Campus of 

Azurém – 4804-533, Portugal, e-mail: pflores@dem.uminho.pt   

 

Abstract. The main goal of this work is present a comparative study on several methodologies to solve 

the equations of motion of constrained spatial multibody systems taking into account the problem of 

constraints violation. In the sequel of this process, the two main categories of methods to eliminate or 

reduce constraints violation are revisited, namely those that are based on constraint stabilization ap-

proaches and direct correction formulations. Particular attention is given to the most popular approach-

es, that is, Baumgarte stabilization formulation, penalty method, Augmented Lagrangian formulation 

and a direct correction approach. Finally, several examples of application are considered to compare 

the accuracy and efficiency of the different methods used throughout this study. 
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1 Introduction 

By and large, the methods to deal with the problem of constraints violation for dy-

namics of constrained multibody mechanical systems can be divided into three 

main groups, namely: (i) constraint stabilization approaches; (ii) coordinate parti-

tioning methods and (iii) direct correct formulations [1]. The constraint stabiliza-

tion approaches are the most popular due to their simplicity and easiness for com-

putational implementation [2]. The coordinate partitioning methods have the great 

merit of allowing the rigorous resolution of the constraint equations at the posi-

tion, velocity and acceleration levels. However, they suffer from poor numerical 

efficiency due to the requirement for the iterative solution for dependent general-

ized coordinates in the Newton-Raphson method [3]. Finally, the direct formula-

tions have physical meaning, computational efficiency, but they can exhibit some 

numerical instability [4]. 

The main focus of this study, which closely follows the recent work by Flores 

and his coauthors [1], is on the elimination of the constraints violation in dynamic 

analysis of spatial mechanisms. For this, body coordinates formulation is utilized 
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to describe the system components and the kinematic joints. The equations gov-

erning the dynamic behavior of the systems incorporate corrective terms that are 

added to the position and velocity vectors in order to satisfy the corresponding 

constraint equations. These corrective terms are expressed in terms of the Jacobian 

matrix and kinematic constraint equations. The corrective terms are added and 

considered during the numerical resolution of the dynamic equations of motion. 

Results for spatial mechanisms are presented and utilized to discuss the assump-

tions and procedures adopted throughout this work. 

2 Methods to Handle Constraints Violation 

The translational and rotational equations of motion for dynamic analysis of con-

strained spatial mechanisms can be expressed in the form [5] 

  (1) 

Applying any method suitable for the resolution of linear algebraic equations 

can solve this linear system of equations. The existence of null elements in the 

main diagonal of the leading matrix and the possibility of ill-conditioned matrices 

suggest that methods using partial or full pivoting are preferred. In a simple way, 

Eq. (1) is solved for the accelerations then, the velocities and positions can be ob-

tained by numerical integration. This procedure must be repeated until the final 

time of analysis is reached. This manner to solve the dynamic equations of motion 

is commonly referred to as the standard Lagrange multipliers method [5]. 

It is known that Eq. (1) does not use explicitly the position and velocity equa-

tions associated with the kinematic constraints. Consequently, during the simula-

tions, the constraint equations start to be violated. In order to keep the constraint 

violations under control, the Baumgarte stabilization method can be considered 

[2]. This method allows constraints to be slightly violated before corrective ac-

tions can take place, in order to force the violation to vanish. Thus, using the 

Baumgarte approach, the equations of motion for a system subjected to kinematic 

constraints can be stated in the following form 

  (2) 

If  and  are chosen as positive constants, the stability of the general solution 

of Eq. (2) is guaranteed. Baumgarte [2] highlighted that the suitable choice of the 

parameters  and  can be performed by numerical experiments. Hence, the 

Baumgarte method has some ambiguity in determining optimal feedback gains. 

The improper choice of these parameters can lead to unacceptable results in the 

dynamic analysis of the multibody systems [6]. 
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The penalty method constitutes an alternative way to solve the dynamic equa-

tions of motion. In this method, the equations of motion are modeled as a linear 

second-order differential equation that can be written in the form [7] 

  (3) 

Taking into account the second derivative of the algebraic constraint equations, 

then Eq. (3) yields 

  (4) 

Pre-multiplying Eq. (4) by the transpose of Jacobian matrix, DT, and after 

mathematical treatment, results in 

  (4) 

Let consider now the Newton-Euler equations of motion for a system of uncon-

strained system and written here as [5] 

 
  Mv = g (5) 

Summation of Eqs. (4) and (5), and after some basic mathematical manipula-

tions yields 

  (6) 

where 

 
 
a = m

c
,     d

c
= 2mwm

c
     and     k

c
= w 2m

c
 (7) 

Equation (7) is solved for the accelerations. This method gives good results if  

tends to infinity. Typical values of ,  and  are 1×107, 10 and 1, respectively 

[9]. It should be noted that with this penalty method, multibody systems with re-

dundant constraints or kinematic singular configurations could be easily solved 

The augmented Lagrangian formulation penalizes the constraints violation, in 

the same form as the Baumgarte stabilization method. This is an iterative proce-

dure that presents a number of advantages relative to other methods because it in-

volves the solution of a smaller set of equations, handles redundant constraints and 

still delivers accurate results in the vicinity of singular configurations [7]. The 

augmented Lagrangian formulation consists of solving the system equations of 

motion by an iterative process. Let index i denote the i-th iteration. The evaluation 

of the system accelerations in a given time step starts as 

 
   
Mv

i
= g,     (i = 0) (8) 

The iterative process to obtain the accelerations proceeds with the evaluation of 

the following equtions obtaining the accelerations 

  (9) 

This iterative process continues until 

 
    
v

i+1
- v

i
= e  (10) 

where  is a specified tolerance. 
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In what follows, an approach to deal with the elimination of the constraints vio-

lation at both position and velocity levels is briefly described [1]. For this, let con-

sider that during the numerical resolution of the dynamic equations of motion, the 

vector of generalized coordinates needs to be corrected due to the constraints vio-

lation. Thus, the corrected positions can be expressed in the form 

 qc = qu + dq (11) 

where qu denotes the uncorrected positions and q is the set of corrections that 

eliminates the constraints violation. This means that the corrective term has to be 

added to vector qu in order to ensure that the constraint equations are satisfied, i.e. 

  (12) 

The term  in Eq. (12) can be understood as the variation of the constraint 

equations and can be expressed as [8] 

  (13) 

Combining now Eqs. (12) and (13) yields 

  (14) 

which ultimately leads to 

  (15) 

In general, the Jacobian matrix, D, is not square, therefore, D-1 does not exist. 

However, the concept of the Moore-Penrose generalized inverse matrix, D+, can 

be employed as [1] 

 D+ = DT (DDT )-1 (16) 

such that 

 DD+D = D      D+DD+ = D+  (17) 

and both D+D and DD+ are symmetric matrices. Consequently, it is possible to es-

tablish the following mathematical relation [1] 

 DT (DDT )-1 = DT (D+ )T D+ = (D+D)T D+ = D+DD+ = D+  (18) 

Thus, Eq. (15) can be rewritten in the following form 

  (19) 

Finally, introducing Eq. (19) into Eq. (14) yields 

  (20) 

that represents the corrected generalized coordinates in each integration time step. 

It must be noticed that the kinematic constraint equations at the position level are, 

in general, nonlinear, then Eq. (20) must be solved iteratively by employing a nu-

merical algorithm, such as the Newton-Raphson method. 



A Study on Constraints Violation in Dynamic Analysis of Spatial Mechanisms   5 

A similar analysis can be performed at the velocity level, resulting in 

   (21) 

that represents the corrected generalized velocities in each integration time step. 

The described methodology can be easily incorporated in the standard method 

to solve the dynamic equations of motion. The approach described above does not 

consider weighting factors to the coordinates and velocities variables. In order to 

take into account different weighting factors, some works have been proposed to 

include inertia of bodies, which allow for the adjustments to be made in an inverse 

manner to the system inertia. The basic idea of this approach is that the more mas-

sive bodies are moved the least if the constraints allow that [8]. 

3 Results and Discussion 

In order to examine the effectiveness of the approaches briefly presented in the 

previous section, a spatial four bar mechanisms is considered as an example of ap-

plication. Figure 1 depicts the initial configuration of this mechanism, which in-

cludes three moving bodies, a non-moving body (the ground), two revolute joints 

and two spherical joints. The revolute joint that connects the crank to the ground is 

along the x-axis, while the revolute joint that connects the follower to the ground 

is in the xy plane and makes a 45º angle with the y-axis. At the initial time, the 

crank is along the z-axis and the other two moving bodies are in the yz plane. A 

spring element is also considered in this multibody system model in which the 

spring stiffness and the natural length are equal to 50 N/m and 0.8 m, respectively. 

Governing properties of the four bar mechanism are presented in Table 1. The ini-

tial conditions necessary to characterize this multibody model are obtained from a 

kinematic analysis for an input constant crank speed equal to 2 rad/s. 

Rocker

Crank

x

y

z

Coupler

k

 

Fig. 1 Spatial four bar mechanism modeled  
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Table 1.  Governing properties for the four bar linkage 

Body Length [m] Mass [kg] 
Moment of inertia [kgm2] 

I I I 

Crank 0.020 0.50 0.03 0.03 0.03 

Coupler 0.064 1.50 0.02 0.02 0.02 

Rocker 0.070 0.15 0.02 0.02 0.02 

 

Long time computational simulations are performed to test and compare the ac-

curacy and efficiency of use different methods to solve the dynamic equations of 

motion. For this purpose, five approaches are considered, namely the standard 

method based on the technique of Lagrange multipliers, the Baumgarte method, 

the penalty method, the augmented Lagrangian formulation and the described 

methodology. The quantitative measure of the efficiency of these approaches is 

drawn from the constraints violation as T, as well as from the computation time 

of the dynamic simulations. Table 2 gives the parameters used for the different 

models, necessary to characterize the problem. 

 
Table 2.  Parameters used for the dynamic simulations 

Final time of simulation 5.0 s Baumgarte -  5 

Integrator algorithm ode45 Baumgarte -  5 

Reporting time step 0.02 s Penalty -  1×107 

Relative tolerance 1×10-6 Penalty -  10 

Absolute tolerance 1×10-9 Penalty -  1 

 

Figure 2 shows the constraints violation at the position level for the four bar 

mechanism. It should be noticed that different scales are used for the results plot-

ted in Figs. 2a-b, in order to clearly observe the effect of the method used to solve 

the system dynamics on the constraints violation. By analyzing the diagrams of 

Figs. 2, it can be observed that when the standard method is utilized the violation 

of the constraint equations grows indefinitely with time. As it was expected, the 

standard method based on the Lagrange multipliers technique produces unac-

ceptable results because the kinematic constraint equations are rapidly violated 

due to the inherent errors and instability that develop during computations. With 

the stabilization methods, the behavior of the different methods is significantly 

different, in the measure that the level of the constraints violation is kept under 

control during the dynamic simulations. Indeed, with the Baumgarte approach, the 

penalty method and the augmented Lagrangian formulation experience tells that 

the numerical results do not diverge from the exact solution, but oscillate around 

it. Magnitude and frequency of the oscillations depend on the values of the penalty 

parameters used. Finally, when the described methodology is utilized to solve the 

dynamic equations of motion, the constraints violation is eliminated as it can be 

observed in Figs. 2. In fact, with the described approach the average of the con-

straints violation is of order 1.0×10-16. 
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Fig. 2 Constraints violation (T) of the four bar mechanism 

Figure 3 depicts the computation time consumed in dynamic simulations for the 

four bar mechanism, which can be used to have an idea about the computational 

efficiency of the different methods used to solve the system dynamics. The most 

efficient method to deal with the constraints violation is the Baumgarte approach. 

It can be observed that the described approach does not penalize the total amount 

of computation time when compared with the other methods to solve the dynamic 

equations of motion. It must be stated thet the standard method is, in fact, the most 

efficient approach, however, it does not take into account the problem associated 

with the constraints violation. 

The efficiency of the described method can be understood by its nature, in the 

measure that the two additional blocks are added to the standard solution of the 

equations of motion [1]. The elimination of the constraints violation for positions 

needs an iterative scheme, because the corrective terms are dependent on the posi-

tions. However, based on the computational tests performed, this process requires 

at most three iterations to eliminate the constraints violation at the position to an 

acceptable level. The constraints violation for velocities are eliminated with a sin-

gle step, since constraints at the velocity level are linear and the corrective terms 

are computed as function of the corrected positions performed previously. 
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Fig. 3 Computation time for the four bar mechanism 



8 P. Flores  

6 Conclusions 

A comparative study on the several methodologies to handle the problem of con-

straints violation in forward dynamics of constrained spatial mechanical systems 

has been presented in this work. For this, the most commonly used method to deal 

with resolution of the equations of motion and constraints violation have been re-

visited, namely the Baumgarte stabilization method, the penalty approach and the 

augmented Lagrangian formulation. In addition, an alternative approach to elimi-

nate the violation of the kinematic constraint equations in the framework of for-

ward dynamics of constrained multibody systems has been described. The basic 

idea of the described approach is to add corrective terms to the position and veloc-

ity vectors with the intent to satisfy the corresponding kinematic constraint equa-

tions. These corrective terms are evaluated as function of the Moore-Penrose gen-

eralized inverse of the Jacobian matrix and of the kinematic constraint equations. 

Finally, a spatial four bar mechanism has been considered as a demonstrative ex-

ample of application to show that the effectiveness of the several approaches uti-

lized in this study. From the obtained results, it can be drawn that the described 

approach is effective in eliminate the constraints violation at both positions and 

velocities levels without penalizing the computational efficiency. 
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