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Abstract. Cayley-Klein parameters are an alternative to Euler parameters for describing the spher-
ical motion group. Based on Study’s and Kotelnikov’s ”Principle of Transference” one can use dual
Cayley-Klein parameters for the motion study of oriented lines in Euclidean 3-space. In this paper
we focus on the transformation of points in terms of dual Cayley-Klein parameters and show that
these parameters imply a very compact symbolic expression of the sphere condition, which is the
central equation for computational algebraic kinematics of parallel manipulators of Stewart-Gough
type. Moreover it is shown that the compactness of this formulation is passed on to the symbolic
expression of the singularity loci. We also adopt our results to the analogue in planar kinematics
and point out the difference to the well-known approach of isotropic coordinates.
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1 Introduction

It is well-known that planar displacements of the Euclidean plane can be written as:
(

x
y

)
7→

(
x0

y0

)
=

(
cosϕ −sinϕ
sinϕ cosϕ

)(
x
y

)
+

(
m
n

)
, (1)

where(x0,y0)
T (resp.(x,y)T ) are the coordinates of a pointP with respect to the

fixed frame (resp. moving frame),ϕ is the angle of rotation and(m,n)T the trans-
lation vector. By interpreting the Euclidean plane as Gaussian plane, Eq. (1) can be
rewritten as:

x+yi 7→ x0+y0i = eiϕ(x+yi)+(m+ni), (2)

wherei denotes the complex unit. In addition one can set:

p0 := x0+y0i, p0 := x0−y0i (3)

and replace the original coordinatesx0 andy0 by:

x0 = (p0+ p0)/2, y0 = (p0− p0)/(2i). (4)
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The obtained pair(p0, p0) are the so-called isotropic coordinates ofP with respect
to the fixed system. Analogously one gets the isotropic coordinates(p,p) := (x+
yi,x− yi) of P with respect to the moving system and the isotropic coordinates
(τ ,τ) := (m+ni,m−ni) of the translation. Thus Eq. (2) equalsp 7→ p0 = eiϕ p+ τ.
In order to make this formulation algebraic, we replaceeiϕ by the complex number
κ , which has to fulfill the normalizing conditionκκ = 1. Hence we get the compact
notation:

p 7→ p0 = κ p+ τ with κκ = 1. (5)

A historical overview on planar kinematics based on isotropic coordinates is
given in the work [21] by Wampler, in which these coordinates are used to determine
the degree and circularity of curves traced by planar linkages. Further references and
historical remarks can be found in the book of Wunderlich [23] where these coor-
dinates are called minimal coordinates. Beside [18] most of the recent work using
isotropic coordinates was done by Wampler (cf. [22] and all self-references therein).

1.1 Motivation and outline of the paper

Based on the algebraic formulation Eq. (5) we can derive the basic equation for the
study of planar parallel manipulators with RPR legs (Fig. 1 left); namely the condi-
tion that a pointP of the moving system is located on a circle with radiusRcentered
at the pointB with fixed coordinates(u0,v0)

T . This so-called circle condition reads
as follows:

(κ p+ τ −b0)(κ p+ τ −b0)−R2 = 0, (6)

where(b0,b0) := (u0+v0i, u0−v0i) denote the isotropic coordinates ofB with re-
spect to the fixed system. Expanding this equation shows that it has 10 terms and
that it is inhomogeneous quadratic in the motion parametersκ ,κ,τ ,τ.

Nevertheless the symbolic expression of Eq. (6) is very compact, a lot of recent
publications (e.g. [2, 7, 9, 11, 19]) use the circle condition formulated in terms of
Blaschke-Gr̈unwald (BG) parameters, which has 26 terms. A motive for doing this
is that one ends up with a homogenous quadratic equation in the BG parameters,
thus methods of projective algebraic geometry can be applied. This gives reason to
ask for a formulation, which has both benefits (compactness and homogeneity). We
present such a formulation as a special case of a more general approach taken for
spatial kinematics. In detail the paper is structured as follows:

We close Section 1 by giving a very brief review on the quaternionic formulation
of displacements in Euclidean spaces of dimension 2 and 3. In Section 2 we discuss
the transformation of points with respect to dual Cayley-Klein (CK) parameters and
use them in Section 3 for presenting the most compact symbolic expression of the
sphere condition and the singularity loci of Stewart-Gough (SG) manipulators (Fig.
1 right), which is known to the author. Moreover, the obtained results can easily be
adopted for planar kinematics, thus we also get a solution to our motivating question;
namely a homogenous circle condition with only 10 terms.
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Fig. 1 (Left) 3-dof RPR planar parallel manipulator: The platform is connected via three RPR-legs
to the base. (Right) SG manipulator: The platform is connected via six SPS-legs to the base. For
the planar as well as the spatial mechanism the anchor points of the legs are denoted byP andB,
respectively, and in both cases only the prismatic joints are active.

1.2 Quaternionic formulation of displacements

Q := q0 + q1i+ q2j+ q3k with q0, . . . ,q3 ∈ R is an element of the skew field
of quaternionsH, wherei, j,k are the so-called quaternion units. The conjugated
quaternion toQ is given byQ̃ := q0−q1i−q2j−q3k. Moreover,Q is called unit-
quaternion forq2

0+q2
1+q2

2+q2
3 = 1.

Displacements in spatial kinematics can be formulated in terms of dual quater-
nionsH+εH, whereε is the dual unit with the propertyε2 = 0. An elementE+εT
of H+ εH with E := e0+e1i+e2j+e3k andT := t0+ t1i+ t2j+ t3k is called dual
unit-quaternion ifE is an unit-quaternion and following condition holds:

e0t0+e1t1+e2t2+e3t3 = 0. (7)

It is well-known (e.g. [10, Section 3.3.2.2]) that displacements of points in the Eu-
clidean 3-space can be expressed by dual unit-quaternionsE+ εT as follows:

P 7→ P0 = E◦P◦ Ẽ+(T◦ Ẽ−E◦ T̃), (8)

where◦ denotes the quaternion multiplication andP := xi+ yj+ zk (resp.P0 :=
x0i+y0j+z0k) is the embedding of a pointPwith Cartesian coordinatesp=(x,y,z)T

(resp.p0 = (x0,y0,z0)
T ) with respect to the moving (resp. fixed) frame intoH.

As both dual unit-quaternions±(E+εT) correspond to the same Euclidean mo-
tion, one considers the homogeneous 8-tuple(e0, . . . ,e3, t0, . . . , t3)R, which are the
well-known Study parameters [20] of the Euclidean motion group SE(3). Note that
(e0, . . . ,e3)R are the so-called Euler parameters of the spherical motion group.

Restricting the Study parameters to planar Euclidean displacements within the
planex3 = 0 impliese1 = e2 = t0 = t3 = 0 (cf. [10, Remark 3.38]) , thus one ends
up with the homogenous quadruple(e0,e3, t1, t2)R, which are the already mentioned
BG parameters [1, 6].
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2 Dual Cayley-Klein parameters

According to the recently published work [17], which also contains a historical
overview and a detailed list of references on CK parameters, the formulation of
spherical displacements of points based on Euler parameters(e0, . . . ,e3)R; i.e.

P 7→ E◦P◦ Ẽ with e2
0+e2

1+e2
2+e2

3 = 1 (9)

can be rewritten in terms of CK parametersα,β ∈ C as follows:

P 7→ EPE∗ with αα +ββ = 1, (10)

where

P :=

(
z p
p −z

)
, E :=

(
α −β
β α

)
and E∗ :=

(
α β
−β α

)
. (11)

Note that the upper index∗ denotes the transposed conjugate of a matrix. Moreover,
P is the embedding of the pointP with Cartesian coordinatesp = (x,y,z)T into
the set of complex 2×2 matrices, which can be seen as a spatial generalization of
isotropic coordinates according to [17]. The introduction of CK parameters can be
completed by giving their relations to the Euler parameters, which read as follows:

α := e0+e3i and β := e2+e1i. (12)

Remark 1.Note that their exists the alternative formulationP 7→ E∗PE, where the
matrix P of Eq. (11) and the formula forβ of Eq. (12) are replaced by:

P :=

(
zi pi
−pi −zi

)
and β :=−e2+e1i. (13)

We prefer the other convention, as the connection with the isotropic coordinates
in case of planar kinematics is straightforward. Moreover, one can compute‖p‖2

simply as−detP. ⋄

Due to the ”Principle of Transference”, which dates back to Kotelnikov [12] and
Study [20], this formulation of a spherical displacement of points can also be applied
to the spatial displacements of oriented lines by dualizing the complete framework;
i.e. complex numbers are substituted by dual complex numbers. Up to the author’s
knowledge the resulting dual CK parameters have only be used for this purpose
[3, 17], but never for the description of displacements of points in Euclidean 3-space.
For doing this, we use the relation to quaternions and a more detailed formulation
of Eq. (8), which reads as follows (cf. [10, page 498]):

1+ εP 7→ 1+ εP0 = (E+ εT)◦ (1+ εP)◦ (Ẽ− εT̃). (14)

A straightforward translation into terms of complex 2×2 matrices yields:

(Ii + εP) 7→ (Ii + εP0) = (E+ εT)(Ii + εP)(E∗− εT∗), (15)

Author's
 vers

ion



Parallel manipulators in terms of dual Cayley-Klein parameters 5

whereI denotes the 2×2 identity matrix and

P0 :=

(
z0 p0
p0 −z0

)
, T :=

(
γ −δ
δ γ

)
with γ := t0+ t3i, δ := t2+ t1i. (16)

Expanding and simplifying Eq. (15) implies:

(Ii + εP) 7→ (Ii + εP0) = Ii + ε(EPE∗+ iTE∗− iET∗). (17)

In order that our later obtained symbolic expressions (e.g. Eq. (26)) are free of the
complex uniti we make the following redefinition:

S := iT =

(
λ µ
µ −λ

)
and S∗ :=−iT∗ =

(
λ µ
µ −λ

)
(18)

with
λ := t3+ t0i and µ := t1+ t2i, (19)

thus we finally get the desired representation, which is summarized next.

Theorem 1. Any spatial displacement of pointsP can be written as:

P 7→ P0 = EPE∗+SE∗+ES∗, (20)

where the four involved parametersα,β ,λ ,µ ∈ C fulfill the normalizing condition
Φ = 1 with

Φ := αα +ββ (21)

and the analogue of the Study condition (7), which is given byΨ = 0 with

Ψ := (αλ −αλ )+(β µ −β µ). (22)

Moreover, the mapping of Eq. (20) is a spatial displacement of points for each
quadrupleα,β ,λ ,µ ∈ C fulfilling Φ = 1 andΨ = 0.

For the planar case we getβ = 0 andλ = 0 due toe1 = e2 = 0 andt0 = t3 = 0,
respectively (cf. end of Section 1.2). Therefore the following corollary holds:

Corollary 1. Any planar displacement of pointsP can be written as:

p 7→ p0 = α(α p+2µ) with α,µ ∈ C and αα = 1. (23)

Moreover, the mapping of Eq. (23) is a planar displacement of points for each bitu-
ple α,µ ∈ C fulfilling αα = 1.

Remark 2.Based on Corollary 1 we can point out the relation

κ = α2 and τ = 2αµ (24)

between the parametersκ ,τ ∈C of Eq. (5) and the parametersα,µ ∈C of Eq. (23),
which is a non-linear one. ⋄
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3 Application to parallel manipulators

For symbolic computations in robotics, we considerα,β ,λ ,µ as independent vari-
ables; i.e. they are uncoupled fromα,β ,λ ,µ . Under this assumption Study’s kine-
matic mapping (e.g. [16, Section 2]) can be reformulated as follows:

Corollary 2. There is a bijection between SE(3) and 8-tuples of complex numbers
(α,β ,λ ,µ ,α,β ,λ ,µ)R fulfilling Ψ = 0 with (α,β ,α,β ) 6= (0,0,0,0) and the con-
dition that the quadruple(α,β ,λ ,µ) is the conjugate quadruple of(α,β ,λ ,µ).

Based on this result the sphere condition, that the platform pointP is located on
a sphere with radiusR centered in the base pointB with fixed coordinatesb0 =
(u0,v0,w0)

T , can be computed as (cf. end of Remark 1):

Φ2R2+det(P0−B0) = 0 with B0 :=

(
w0 b0

b0 −w0

)
, (25)

where the coefficientΦ2 of R2 homogenizes the equation. Doing the corresponding
tricky summation of Husty [8] (see also [15]) by addingΨ 2 to the left hand-side,
shows thatΦ factors out. The remaining quadratic factorΣ reads as follows:

α2pb0−β 2pb0+α2pb0−β 2
pb0+(αα +ββ )(R2−z2−w2

0−b0b0− pp)

+2(αα −ββ )zw0−2αβ pw0+2αβzb0+2αβzb0−2αβ pw0

−2(β µ +β µ)(w0+z)+2(αλ +αλ )(w0−z)+2(α µ +βλ )b0

+2(αµ +β λ )b0+2(βλ −αµ)p+2(βλ −αµ)p−4(λλ +µµ).

(26)

Therefore the sphere conditionΣ = 0 has only 38 terms in contrast to its formulation
based on Study parameters, which has 80 terms (cf. [8]). An example for pointing
out the beneficial effects of this reduction of terms is the symbolic elimination pro-
cess in the direct kinematics of SG platforms.

Example 1.As each leg imply a sphere condition we get six sphere equationsΣi = 0
with i = 1, . . . ,6. It is well-known [8] that the differences of two sphere conditions
are only linear in the translational parameters. Therefore the system of five equations
Ψ = Σ5−Σ1 = Σ4−Σ1 = Σ3−Σ1 = Σ2−Σ1 = 0 linear inλ ,µ ,λ ,µ can only have a
non-trivial solution if the determinant of the 5×5 coefficient matrix vanishes. This
determinant splits up intoΦ and a factor with 53280 terms, which is homogenous
of degree 4 inα,β ,α,β . In contrast, the corresponding quartic expression based on
Study parameter has 258720 terms (cf. [5, Section 3.2]). ⋄

By settingz=w0 = β = β = λ = λ = 0 we get from Eq. (26) the circle condition,
which can be written similarly to Eq. (6) as:

(α p+2µ −αb0)(α p+2µ −αb0)−ααR2 = 0. (27)

This equation has both benefits; i.e. the compactness of the isotropic formulation
and the homogeneity of the approach based on BG parameters (cf. Section 1.1).
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In the following we show that the compactness of the proposed formulation
passes on to the symbolic expression of the singularity loci of SG platforms.
Therefore we compute the Plücker coordinates of the line spanned by the base
anchor point and the corresponding platform anchor point. The direction vector
l = (l1, l2, l3)T is given by(p0 −Φb0), where the coefficientΦ is again used for
homogenization, and the moment vectorm := (m1,m2,m3)

T reads asb0× l. Thus
each entry of the 6-tuple(l,m)R fulfilling the Plücker condition〈l,m〉 = 0 is ho-
mogenous of degree 2 in the dual CK parametersα,β ,λ ,µ ,α,β ,λ ,µ. By defining:

l := l1+ l2i =α2p−β 2
p−ααb0−ββb0+2αβz+2λ β +2µα,

m := m2+m1i =(α2p−β 2p)w0+(βα p+βα p)b0+(ββ −αα)zb0

+2(αβz+α µ +βλ )w0+(β µ +β µ −αλ −αλ )b0,

n := 2m3i =2(αµ +β λ +αβz0)b0−2(α µ +βλ +αβz0)b0

+(α2b0+β 2b0)p− (α2b0+β 2
b0)p,

(28)

we can replace(l,m)R by the more compact 6-tuplef := (l , l , l3,m,m,n)Rwith

l3 = αα(z−w0)−ββ (z+w0)−αβb0−αβb0+αλ +αλ −β µ −β µ (29)

fulfilling lm− lm+ l3n= 0. As each leg of the SG platform implies such a 6-tuple,
we getf1, . . . , f6. As a consequence the manipulator is in a singular pose (cf. [14]),
if and only if:

det(F) =0 with F := (f1, . . . , f6). (30)

The expression det(F)splits up intoΦ2 and a homogenous octic factorF in the dual
CK parameters. Moreover,F has 542496 terms if the platform and base anchor
points are chosen as follows with respect to the moving and fixed frame: the first
anchor point is located in the origin, the second one on thex-axis and the third one
in thexy-plane. In contrast,F reformulated in Study parameters has 1748184 terms.

Note thatF = 0 can be seen as an alternative singularity locus expression to [4,
13]. Finally, the singularity loci of the planar analogue (Fig. 1 left) can be computed
as the determinant of a 3×3 matrix (cf. [9]), asm= m= l3 = 0 hold.

4 Conclusion

We discussed the transformation of points in terms of dual CK parameters (Section
2) and showed that these parameters imply a very compact symbolic expression
of the sphere condition and the singularity loci of SG platforms (Section 3). These
parameters cannot only be restricted to planar motions, but they can also be extended
for kinematics in Euclidean 4-space according to [16]. The proposed representation
is especially of interest for the determination of SG platforms with self-motions (e.g.
[5]), but maybe it is also beneficial for the symbolic study of other mechanisms.
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räumlichen Geometrie verknüpft. Sitz.-Ber. der math.-nat. Klasse der kaiserlichen Akademie
der Wissenschaften Wien120 677–741 (1911)

7. Hayes, M.J.D., Husty, M.L.: On the kinematic constraint surfaces of general three-legged
planar robots. Mechanism and Machine Theory38(5) 379–394 (2003)

8. Husty, M.: An algorithm for solving the direct kinematics of general Stewart-Gough plat-
forms. Mechanism and Machine Theory31(4) 365–380 (1996)

9. Husty, M., Gosselin, C.: On the Singularity Surface of Planar 3-RPR Parallel Mechanisms.
Mechanics Based Design of Structures and Machines36 411–425 (2008)

10. Husty, M., Karger, A., Sachs, H., Steinhilper, W.: Kinematik und Robotik. Springer (1997)
11. Husty, M., Mielczarek, S., Hiller, M.: Constructing an overconstrained planar 4RPR manipu-

lator with maximal forward kinematics solution set. CD-ROM Proceedings of the 10th Inter-
national Workshop on Robotics in Alpe-Adria-Danube Region RAAD (2001)

12. Kotelnikov, A.P.: Screw Calculus and Some Applications to Geometry and Mechanics. An-
nals of the Imperial University of Kazan (1895)

13. Li, H., Gosselin, C.M., Richard, M.J., Mayer St-Onge, B.: Analytic Form of the Six-
Dimensional Singularity Locus of the General Gough-Stewart Platform. Journal of Mechani-
cal Design128 279–287 (2006)

14. Merlet, J.-P.: Singular Configurations of Parallel Manipulators and Grassmann Geometry. The
International Journal of Robotics Research8(5) 45–56 (1989)

15. Nawratil, G.: Kinematic Mapping of SE(4) and the Hypersphere Condition. Advances in
Robot Kinematics (J. Lenarcic, O. Khatib eds.), pages 11–19, Springer (2014)

16. Nawratil, G.: Fundamentals of quaternionic kinematics in Euclidean 4-space. Advances in
Applied Clifford Algebras26(2) 693–717 (2016)

17. Pennestri, E., Valentini, P.P., Figliolini, G., Angeles, J.: Dual Cayley-Klein parameters and
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