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Abstract. In this paper, we present a Monte Carlo simulation based method to determine the
workspace of spatial parallel and hybrid manipulators. The method does not need the solution
of the forward kinematics problem which is often difficult for spatial multi-degree-of-freedom par-
allel and hybrid manipulators. The method uses the solution of the inverse kinematics problem,
which is often much simpler. The method can also readily incorporate joint limits and obtain the
well-conditioned workspace. The approach is illustrated with a six-degree-of-freedom hybrid par-
allel manipulator which is a model for a human hand with three fingers. A typical human hand
geometry and the range of motion at the joints are incorporated and the inverse kinematics equa-
tions for each finger is derived and used to obtain the volume of the hybrid parallel manipulator.

Key words: Workspace of parallel manipulators, Monte Carlo method, human hand inspired hy-
brid parallel manipulator

1 Introduction

The workspace of a parallel or a hybrid manipulator is much more difficult to find
in comparison to that of a serial manipulator. In a serial manipulator, the workspace
is determined by the geometry of the manipulator, its Denavit-Hartenberg param-
eters and the limits on the actuated joints. In a parallel or hybrid manipulators, in
addition, the ranges of the motion of the passive joints need to be determined by
solving the forward kinematics problem – if there are no real solutions to the for-
ward kinematics problem, then the parallel manipulator cannot be assembled for the
given actuated joint variables. Additionally, the self collisions of the links of the
robot and the singularities which may split the workspace thereby restricting the
motion across them increase the complexity of determining the workspace. Mer-
let [11, 12] summarizes the approaches for determining the workspace of parallel
manipulators. These approaches are search based – an estimated region in space
is discretized, the inverse kinematics is solved at discrete points to obtain the joint
variable and then the joint variables are check for joint limit constraints. To obtain
better resolution, the 3D workspace is discretized finer. One can also obtain the ori-
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entation workspace [7, 13] and also obtain regions where the manipulator Jacobian
is not rank deficient [8]. In this work we use a Monte-Carlo based approach to obtain
the well-conditioned workspace of a parallel hybrid manipulator. The main advan-
tage of using Monte-Carlo based approach as described later, involves solving only
the inverse kinematics problem for a manipulator and various other checks may be
accommodated to ensure that the well-conditioned workspace is obtained without
violating any joint limits. To illustrate the Monte-Carlo method based approach,
we use a model of the human hand where the palm, the thumb, the index and the
middle finger, grasping an object, is modeled as a hybrid parallel manipulator. There
exists several models of multi-fingered human hand (see, for example, Stanford-JPL
hand [15], Utah-MIT hand [9], DLR hand [1] and Metahand [2]). In this paper we
present a six-degree-of-freedom model of a three-fingered hand, each finger with
three degrees of freedom, with two joints actuated in each finger. For the kinematic
model we use the anatomical dimensions of a typical human hand from available
literature. The joint limit constraints in the fingers are also used in determining the
workspace boundary and the volume. The Monte-Carlo based approach also uses the
condition number of the Jacobian to determine the well-conditioned workspace. The
paper is organized as follows. Section 2 gives a brief overview of the Monte-Carlo
method and discusses why it may be useful for obtaining workspaces of manipu-
lators. Section 3 describes the kinematic model of the hybrid parallel manipulator
modeling the three-fingered human hand. In section 4 we describe two general re-
sults pertaining to the workspace of the manipulator and conclude with section 5 by
summarizing the paper and proposing a possible avenue for future extension of the
current work.

2 A review of the Monte Carlo method

The Monte-Carlo method can be used to evaluate integrals of arbitrary functions
(vector or scalar, smooth or non-smooth) over an arbitrary domain [5]. The integral

I =
∫
[0,1]d

f (x) dx

where f (·) is a bounded real valued function, can be obtained as E( f (U)) where
E(·) is the expectation of a variable taking a particular probabilistic value, and U =
[u1,u2, ...,ud ]

T a 1×d vector taking random values of ui ∈ [0,1] ∀i = 1,2, ...d. From
the strong law of large numbers the average,

SN =
1
n

n

∑
i=1

f (Ui) (1)

converges to E( f (U)) as n −→ ∞ with probability 1.0.
We use the Monte Carlo method to obtain the well-conditioned and reachable

workspace of a parallel manipulator, by recognizing that it is an integration problem
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d = 2r
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(a) Visualization of Monte Carlo search
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(b) Comparison of various Monte Carlo methods

Fig. 1: Demonstration of the Monte Carlo method

in ℜd where d is the dimensionality of the joint space of the parallel manipulator. For

this we formulate a function f (j) =
{

0
1 , where j = {θi,ϕ j}T , ∀i = 1,2, ..n actuated

joint variables and ∀ j = 1,2, ...m passive joint variables and m+n = d. At a given
position and orientation of a chosen end-effector of the manipulator, the function f
assumes either 0 or 1 depending on whether the said position and orientation of the
parallel manipulator is well conditioned1 and inverse kinematics of the manipulator
is possible at that position and orientation with all the joint values within permissible
joint limits.

We demonstrate the above by a following example. We assume that the well
conditioned reachable workspace of a certain manipulator is a sphere with cen-
ter at the origin {0,0,0} and of radius r units. Therefore, the function f (p), p =
{x,y,z}T is used to classify whether a randomly selected point p is in, on or out-
side the permissible workspace. For this case, the check is very simple being,

f (p) =
{

1 ∀ x2 + y2 + z2 ≤ r2

0 otherwise
. We test the method by fixing r = 2 units and

searching uniformly through a cube of sides a = 5 units, centered at the origin.
A schematic view of the workspace and search-space is given in figure 1a. An ap-
proximation of the probability that a uniformly selected random point lies in or on

the workspace is
Nin

Ntotal
where Nin is the total number of points in/on the workspace

(selected by ensuring f (p) = 1), and Ntotal is the total number of points searched
through. Since, by assumption, the points were randomly distributed, the volume of

the workspace can be approximated by VW =
Nin

Ntotal
× a3. A comparison of Monte

Carlo methods with different iteration depths is given in figure 1b. We observe that
the Monte Carlo method with Ntotal = 10× 56 = 156,250 samples is quite accu-

1 We have used a definition of the condition number which encompasses both linear and angular
motion of the manipulator at the said position and orientation. The well conditioned-ness is ensured
by restricting the condition number to be less than 100 at all times.
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rate (accuracy is ≥ 99.8%) and takes fairly low computation time2 of less than 2
seconds.

3 Description of the parallel manipulator

In this section, we first consider an anatomical representation of the human hand (see
figure 2a) and then present a schematic representation of the proposed manipulator
(see figure 2b). For the kinematic model, we consider only the thumb, index and
middle finger. In figures 2a and 2b, all the joints of interest are labeled. For the index
and middle fingers, the labels with a suffix 0, i.e. B0

1 & B0
2 represent the metacarpo-

phalangeal joints, B0
3 is the trapezium joint between the carpals and metacarpal

bone of the thumb. For the index and middle fingers, the joints with suffix one, i.e.
B1

1 & B1
2 are the joints between the proximal and intermediate phalanges, for the

thumb, the joint B1
3 indicates the joint between the metacarpal and the proximal

phalanx bone. Finally, B2
1 & B2

2 indicate the joints between the intermediate and
distal phalanges, for the thumb, the joint B2

3 indicates the joint between proximal
and distal phalanx of the thumb. The main difference between the proposed model
and that of the Salisbury hand (see [15]) is that we are considering the metacarpo-
phalangeal joint for the index and middle fingers to be a two degree of freedom joint,
as opposed to a single revolute joint, as considered by Salisbury and others. The
joint was realized by 2 intersecting orthogonal revolute joints. To obtain analytical
solutions of the inverse kinematic problems of all the joint values during a given
motion of the manipulator, we realize that we can have at most 9 joints with 6 active
joints for the targeted 6 degrees of freedom and 3 passive joint, distributed as one
passive joint per finger.

Kinesiological studies (see the work by Nakamura et al. [14] and the references
contained therein for more details) have shown that all the joints in the human
finger do not equally participate in the prehensile movements of the human hand.
For a given grasping task, the motion is generally started from the proximal joints
B0

1 ,B
0
2 & B0

3 and end in the distal joints B2
1 ,B

2
2 & B2

3, with the proximal joints being
active for most of the time. Therefore, we choose the proximal joints to be actuated
and we fix the distal joints of the index and middle fingers B2

1 ,B
2
2 and make B2

3 pas-
sive. We conservatively choose the joint limit ranges to be ranging from 0◦ to 90◦.
This is somewhat less to that specified by Lin et al. [10], Degeorges and Oberlin [4],
and Degeorges et al. [3]. This was done to exclude the joint values greater than 0◦

and less than 90◦, which may be introducing singularities, and increasing the com-
putational time by checking the equivalent condition number for more number of
points.

A brief formulation and solution of the inverse kinematics (IK) problem is given
in appendix 1. It maybe noted that the inverse kinematics of the manipulator, for the

2 The CPU times are for Matlabr R2015a running on a Windows 7 PC with an Intel XEON quad
core processor at 3.10 GHz and 16 GB of RAM
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(a) Anatomy of human hand {https://
en.wikipedia.org/wiki/Hand}
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(b) Schematic of the parallel manipulator

Fig. 2: Anatomical and schematic representation of the human hand

Table 1: Joint notations in figure 2b and permissible motions

Joint center Joint variable Nature Range of motion/joint value
B0

1 and B0
2 θ1 and θ2 Active 0◦ to 90◦

B0
3 θ3 Active −45◦ to 45◦

B1
1 and B1

2 ϕ1 and ϕ2 Active 0◦ to 90◦

B1
3 ψ3 Active 0◦ to 90◦

B0
1 and B0

2 ψ1 and ψ2 Passive 0◦ to 15◦

B2
3 ϕ3 Passive 0◦ to 90◦

B2
1 and B2

2 γi and γm Fixed 0◦

B0
3 γt Fixed γt = 45◦

S1, S2 and S3 {ξ i
X ,ξ i

Y } ∀i = 1,2,3 Passive ±45◦

index, middle and thumb, can be solved analytically since the eliminant obtained
is a quartic function of the angle ψi (see, Ghosal [6]). The solution of the direct
kinematics problem requires the solution of a sixteenth degree ploynomial.

4 Results: Workspaces of the manipulator

For simulation we use the following dimensions measured off the right hand of an
adult male individual. The dimensions shown in table 2, along with the abbrevia-
tions used correspond to the same in figure 2b. For determining the workspace of
the manipulator, we have considered 200,000 random points in the Cartesian space
bounded by X ∈ [0,80]mm, Y ∈ [0,80]mm and Z ∈ [0,80]mm. At each of these
points we have assigned a random configuration of the object, △S1S2S3 in figure 2b
and checked the inverse kinematics solution of the manipulator. If the IK problem
was solvable by satisfying the joint limits in table 1, the equivalent condition num-
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ber3 was less than 102 and the motions of the S joints were within the prescribed
limits, the point is counted and used for the representation as shown in figure 3a.
Using the data from table 2 we obtain the volume of the workspace of the manip-

Table 2: Sample finger and hand segment lengths

Hand part Symbols in figure 2b Values in mm.
Index finger {l11, l12, l13} {35.45, 23.92, 17.6}

Middle finger {l21, l22, l23} {41.33, 22.3, 18.26}
Thumb {l31, l32, l33} {45.7, 36.23, 20.52}
Palm {d,h} {15, 68.83}

ulator as 1.4× 103 mm3. The orientations workspace, in terms of X −Y −Z Euler
angles, at a point (marked by a black dot) is shown in figure 3b. The shape and
volume of the workspaces shown in figure 3 was obtained in less than 50 seconds.
It may be noted that the range of the Euler angles are chosen to be ±90◦. The top
part of figure 4 shows the workspace of the Salisbury hand ([15]) for the same set of
parameters and it can be seen that the well conditioned workspace for the proposed
manipulator is larger than the workspace of the Salisbury hand.
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Fig. 3: Position and orientation workspaces of the manipulator

5 Conclusions

In this paper, we have used the Monte-Carlo method to determine the workspace of
a six-degree-of-freedom hybrid-parallel manipulator. The hybrid-parallel manipula-

3 Obtained by combining the linear and angular velocity Jacobian matrices by scaling the lengths
by {l11 + l12 + l13} as shown in figure 2b.
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Fig. 4: Comparison of well-conditioned workspaces between the proposed manipu-
lator and the Salisbury hand (see [15])

tor is a model of a three-fingered human hand grasping an object with the contact
between the object and the fingers modeled with spherical joint which implies that
there is no rolling at the contact. Each finger has two actuated and one passive joint.
The dimensions of the link, the geometry and the joint limits of the hybrid-parallel
manipulator are derived from a typical human hand. The general shape and mea-
sure of the workspace has been obtained using the Monte Carlo method. However, a
majority of dexterous manipulation tasks are realized by rolling type of contact be-
tween the finger-tips and the object, and we are attempting to extend this approach
to include rolling contact between the fingers and the object.

1 Appendix I: Solution of the IK problem of the proposed
manipulator

For the most general case, the position vector of the point S1 (see figure 2a) is given
as the expressions of X, Y and Z below. From the expressions in equations 2, 3 and
4 we obtain E1 = X2+(Y +d)2+(Z−h)2 as given in equation 5. Using the expres-
sions for E1 and Z from equations 5 and 4, in Sylvester’s dialytic method we can
obtain the eliminant for ψ1 as a quartic function of the angular variable. The value
of θ1 may be obtained by solving the expression for −X + (Y + d) symbolically
and the value of ϕ1 is obtained by using terms from the expressions of Z and E1 as
discussed in [6].

X =
1
2
(l11 cos(ψ1 − θ1) + l11 cos(ψ1 + θ1) + l12 cos(ϕ1 − ψ1 + θ1)

+l12 cos(ϕ1+ψ1+θ1)+l13 cos(γi+ϕ1−ψ1+θ1)+l13 cos(γi+ϕ1+ψ1+θ1))

(2)
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Y =
1
2
(l11 sin(ψ1 + θ1) + l11 sin(ψ1 − θ1) + l12 sin(ϕ1 + ψ1 + θ1)

− l12 sin(ϕ1−ψ1+θ1)+ l13 sin(γi+ϕ1+ψ1+θ1)− l13 sin(γi+ϕ1−ψ1+θ1))

− d
(3)

(4)Z = −sin(ϕ1 + γi + θ1) l13 − sin(θ1 + ϕ1) l12 − sin(θ1) l11 + h

(5)E1 = (2 cos(γi) l11l13 + 2 l12l11)cos(ϕ1)− 2 l13 sin(γi)sin(ϕ1) l11

+ 2 l13 cos(γi) l12 + l11
2 + l12

2 + l13
2
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