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Abstract. This paper looks at the forward kinematics problem of the 3-RPS manipulator from a
geometric perspective. It shows that the problem is equivalent to finding the intersection of a pair
of quad-circular octic curves with a circle. The results explain all the known algebraic results in
this regard, and provide an intuitive insight into the nature of the solutions, as regards the operation
modes, and the assembly modes inside each. The theoretical results are illustrated with a numerical
example, where all the 16 assembly modes are real.
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1 Introduction

Forward kinematic (FK) problem of the 3-RPS manipulator has been studied in
detail in the past [7, 2]. In a recent contribution, Schadlbauer et al. present a detailed
algebraic analysis using the Stüdy parameter representation of SE(3), leading to
the identification of the two operation modes of the manipulator. In this paper, a
novel geometric approach to the problem is proposed, in which the manipulator is
decomposed into two kinematic sub-chains, namely, a spatial RSSR chain, and a
planar RP chain. The FK problem reduces to the intersection of the circle generated
by the second chain with the surface generated by the first one, once all the inputs are
given. While this idea has been mentioned in [3], the authors were not able to find
any published reports using this approach. The authors retrieve the fact that there
are up to 16 possible assembly modes, counting the pair-wise mirrored modes at the
base plane. Also, the two operation modes reported in [6] show up in these results,
in a new and interesting manner. The geometric interpretation of the FK could lead
to an intuitive understanding of the singularities of the manipulator, which is yet to
be studied.

The rest of the paper is organised as follows: the geometric formulation of the
FK problem, followed by a numerical example is presented in Section 2. The new
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results are interpreted geometrically and corroborated with the existing results in
Section 3. Finally, the conclusions are presented in Section 4.

2 Geometric formulation of the FK problem

The FK problem is formulated below, as a geometric problem of finding the inter-
sections of a surface and a circle in R3.

2.1 Geometry of the 3-RPS manipulator

The 3-RPS manipulator consists of three legs, each of which is an RPS-serial chain
connected to the fixed platform bbb1bbb2bbb3 by a revolute joint, and to the moving plat-
form ppp1 ppp2 ppp3 by a spherical joint, as shown in Fig. 1a. The said platforms are equi-
lateral triangles in shape, with circumradii b and a respectively. The manipulator
has three degrees-of-freedom (DoF), which are activated by the prismatic actua-
tors denoted by lll = [l1, l2, l3]>, while the revolute joints are passive. These joint
angles, denoted by φφφ = [φ1,φ2,φ3]

> form the unknowns to be obtained as a result
of the FK problem. The fixed frame of reference {A}, given by oooA-XXXAYYY AZZZA, is at-
tached to the centre of the base platform, while the moving frame of reference {B},
by oooB-XXXBYYY BZZZB, is attached at the centre of the moving platform. The vertices of the

fixed and moving platforms are found as: Abbb1 = [b,0,0]>, Abbb2 =
[
− b

2 ,
√

3b
2 ,0

]>
,

Abbb3 =
[
− b

2 ,−
√

3b
2 ,0

]>
; and A ppp1 = Abbb1 + [−l1 cosφ1,0, l1 sinφ1]

>, A ppp2 = Abbb2 +[
l2
2 cosφ2,−

√
3l2
2 cosφ2, l2 sinφ2

]>
, A ppp3 = Abbb3 +

[
l3
2 cosφ3,

√
3l3
2 cosφ3, l3 sinφ3

]>
,

respectively.
The objective of the FK problem is to determine the position and orientation of

the moving platform. This can be achieved if the unknown passive angles, φi, can
be obtained from the knowledge of the inputs l j. Three independent equations need
to be formed, relating φi to l j, which is accomplished below using the concept of
kinematic sub-chains.

2.2 Derivation of the constraints

The manipulator is hypothetically decomposed into two sub-chains, by removing the
spherical joint at point ppp1, as shown in Fig. 1. This leads to two hypothetically dis-
tinct points: ppps1

, which is a coupler point of the spatial RSSR mechanism bbb2 ppp2 ppp3bbb3;
and pppc1

, which is the tip of the serial chain bbb1 ppp1. Obviously, the points ppps1
and pppc1

must coincide to form the original point ppp1 in the manipulator. Equivalently, the
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(a) 3-RPS manipulator (b) sub-chains

Fig. 1: 3-RPS manipulator decomposition into sub-chains

locus of ppps1
, which is a surface, must intersect the locus of pppc1

, i.e., a circle in the
plane oooAbbb1 ppp1 (see Fig. 1).

2.2.1 Derivation of the coupler surface, S = 0

Let A ppps1
= A pppc1

= A ppp1 = [x,y,z]>. Once the inputs l2, l3 are frozen, the locus of ppps1
,

which can be interpreted as the coupler surface of the said RSSR chain, is described
in terms of five unknown variables, namely, φ2,φ3,x,y,z. These variables need to
satisfy the following constraints:

• The first constraint is derived from the closure of the RSSR loop. This is equiva-
lent of noting that the distance between A ppp2 and A ppp3 is equal to

√
3a:

g1(φ2,φ3,x,y,z), (A ppp3− A ppp2) · (A ppp3− A ppp2)−3a2 = 0. (1)

• The other two constraints are derived from the fact that the locus of ppps1
, with

respect to the points ppp2 ppp3, is a circle, in a plane that bisects ppp2 ppp3 perpendicu-
larly. In effect, this defines a virtual rigid link ppp23 ppps1

, which has a rotary joint
at ppp23, with an axis aligned with ppp2 ppp3. Orthogonality of the virtual link to ppp2 ppp3
is captured by the constraint:

g2(φ2,φ3,x,y,z), (A ppp23− A ppps1
) · (A ppp3− A ppp2) = 0. (2)

Rigidity of the virtual link leads to the third and final constraint:

g3(φ2,φ3,x,y,z), (A ppp23− A ppps1
) · (A ppp23− A ppps1

)− 9a2

4
= 0. (3)
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The unknown φ2 is easily eliminated from Eqs. (1, 3), which are linear in sinφ2
and cosφ2. This leads to the eliminant h1(φ3,x,y,z) = 0, while substitution of sinφ2
and cosφ2 into Eq. (2) leads to h2(φ3,x,y,z) = 0. The function h1 is of degree four
in cosφ3, sinφ3, while h2 is linear in these. Converting hi = 0 to their algebraic forms
in t3 = tan(φ3/2) one obtains the equations si(t3,x,y,z) = 0, i= 1,2. The equation of
the coupler surface, S(x,y,z) = 0, which is of degree 20 in x,y,z and even powered
in z, is obtained by eliminating t3 between the last two equations. The process of
elimination is depicted in schematic (4) below:

h1(φ3,x,y,z) = 0
φ3→t3
−−−→ s1(t3,x,y,z) = 0

h2(φ3,x,y,z) = 0
φ3→t3
−−−→ s2(t3,x,y,z) = 0

 ×t3−→ S(x,y,z) = 0. (4)

The symbol ‘
φ3→t3
−−−→’ denotes the conversion of the equations preceding it, into their

algebraic form in t3 = tan(φ3/2). The symbol ‘
×t3−→’ represents the elimination of

the variable t3 from the equations preceding it.

2.2.2 Derivation of the circular constraint, C = 0

The point pppc1
describes a circle in the plane oooAbbb1 ppp1, by virtue of the rotary joint

at bbb1. This can be captured in terms of algebraic equations as follows.

• Rigidity of leg 1 (given the input l1), expressed in terms of the leg-length con-
straint, describes a sphere of radius l1, centered at bbb1:

ζ1(x,y,z), (A pppc1
− Abbb1) · (A pppc1

− Abbb1)− l2
1 = 0. (5)

• Axis of the rotary joint at bbb1 is along eeeYA = [0,1,0]>, which leads to the planarity
constraint:

ζ2(y), (A pppc1
− Abbb1) · eeeYA = 0 (6)

⇒ y = 0. (7)

The locus of the point pppc1
is established as a circle of radius l1 centered at bbb1, by

cutting the sphere in Eq. (5) by the plane y = 0. The equation of the circle, denoted
as C(x,z) = 0, is obtained by substituting y = 0 in Eq. (5).

2.3 Derivation of the Forward Kinematic Univariate (FKU)

The FK problem may be solved by computing the intersections of the surface S = 0
with the circle C = 0. However, the same may also be reduced by first cutting the
surface S = 0 by the plane y = 0 to obtain the curve C′ = 0 in the XXXAZZZA plane,
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and then obtaining the intersections of C′ = 0 with C = 0. An advantage of this
approach is that the curve C′ = 0 decomposes into three components (see Fig. 2 for
an illustration, and Section 3 for a detailed interpretation of the same), as shown in
schematic 8:

S(x,y,z) = 0
y→0
−−−→C′(x,z) =C′0(x,z)C

′
1(x,z)C

′
2(x,z) = 0. (8)

The component C′0(x,z) = (x+2b)2 + z2 = 0 admits a real solution iff x =−2b and
z = 0. For these values of x, z the constraint equations given by Eqs. (1, 2, 3, 5) in
Sections 2.2.1, 2.2.2 are consistent iff the input parameters satisfy the following
conditions:

l2
2 = l2

3 = 3a2−3b2, l2
1 = 9b2. (9)

The conditions in Eq. (9) correspond to the finite self- motion of the manipula-
tor reported in [5]. Hence, the factor C′0 is ignored in the following analysis. The
implications of the said factor in relevance to the sub-chains have been discussed
in [1]. The components C′i , i = 1,2 are of degree 8 in x,z and they describe the
two operation modes of the manipulator. Bézout limit puts the possible number of
intersections with a circle at 16. However, the components of C′i describe very spe-
cial octic curves—these are quad-circular in nature. Therefore, 4 pairs of points of
intersection lie in the plane at infinity, thus limiting the number of finite complex
solutions to only 8, per mode.

Vanishing of the resultant of C′1(x,z) with C(x,z) w.r.t. x leads to the desired FKU
equation, namely, ξ1(z) = 0, for the mode 1.

C′1(x,z) = 0
C(x,z) = 0

)
×x−→ ξ1(z) = 0 ,

C′2(x,z) = 0
C(x,z) = 0

)
×x−→ ξ2(z) = 0.

A similar computation leads to ξ2(z) = 0, the FKU equation for the second mode.
These equations have been derived in closed-form, whereupon it is observed that
the FKUs are both of degree four in z2, and they maintain the relationship:

ξ1(a) = ξ2(−a), (10)

where a is the circumradius of the moving platform.

2.4 Numerical example

The formulation presented above is illustrated for the following set of numerical
values: a = 1/2, b = 1, l1 = 11/5, l2 = 23/10 and l3 = 12/5. The length dimen-
sions are scaled by the radius of the circum-circle of the base triangle, b, rendering
them unit-less, while all angles are measured in radians. It may be noted that the
rational values of the numeric parameters help in retaining the exact nature of the
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Table 1: Sixteen real solutions to forward kinematics problem

Operation
mode

Assembly
mode

z x φ1 φ2 φ3 x0 x1

Mode 1

1 2.197 0.889 1.520 0.899 0.860 0 -0.268
2 -2.197 0.889 -1.520 -0.899 -0.860 0 -0.268
3 1.721 -0.371 0.898 1.465 0.831 0 -0.393
4 -1.721 -0.371 -0.898 -1.465 -0.831 0 -0.393
5 1.660 -0.443 0.855 0.829 1.386 0 -0.540
6 -1.660 -0.443 -0.855 -0.829 -1.386 0 -0.540
7 1.627 -0.480 0.833 0.853 0.912 0 -0.987
8 -1.627 -0.480 -0.833 -0.853 -0.912 0 -0.987

Mode 2

1 2.178 0.687 1.428 0.781 1.264 -0.469 0
2 -2.178 0.687 -1.428 -0.781 -1.264 -0.469 0
3 2.165 0.609 1.392 1.298 0.754 -0.400 0
4 -2.165 0.609 -1.392 -1.298 -0.754 -0.400 0
5 2.139 0.485 1.335 1.355 1.355 -0.993 0
6 -2.139 0.485 -1.335 -1.355 -1.355 -0.993 0
7 1.597 -0.513 0.812 1.390 1.320 -0.565 0
8 -1.597 -0.513 -0.812 -1.390 -1.320 -0.565 0

Fig. 2: Constraint geometries in the plane XXXAZZZA: C′i = 0 and C = 0

computation up to the values of the coefficients of the FKU equations. The monic
forms of these, for the given values, are1:

1 Though the coefficients are obtained as exact rational numbers, their real approximations are
presented here for the want of space.
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ξ1 = u4−13.193u3 +63.689u2−134.113u+104.347,

ξ2 = u4−16.554u3 +101.072u2−268.351u+259.275, where u = z2.

Each operation mode contains 8 real assembly modes for these numbers. The re-
sults have been tabulated in Table. 1. The solutions are visualised as the points of
intersection of the constraint curves C′i = 0 and C = 0, as seen in Fig. 2.

3 Interpretation of the results and correlation with existing ones

The algebraic properties of the FKU of the 3-RPS manipulator have been studied
and reported at length. Yet, there has been no attempt to bring out the coherence
between these results, and to visualise them geometrically. For instance, [6] reports
the two operational modes, each characterised by the vanishing of one of the two
Stüdy parameters, x1 and x0. In physical terms, this means that in the latter case, the
moving platform rotates through π about a horizontal axis. In [4], the FKU is derived
from the constraint equations in the joint-space, and it is found that the FKU factors
in two components, g1 and g2, where g1(a) = g2(−a), a being the circum-radius of
the moving platform. It may be noted that this is consistent with the findings in [6],
since a going to −a is identical in effect with the flipping of the moving platform
up-side down, which is same as the π-screw motion described in [6]—in either case,
a CCW distribution of the vertices ppp1, ppp2, ppp3 changes into a CW one.

The results of the present work corroborate and unify all of the results on FK
reported in [6, 4]. The relationship with the results in [4] is captured by Eq. (10),
where ξi play the roles of gi in [4]. Also, the FKU is found to have only the even
powers in either mode, signifying the manipulator poses are reflected pairwise at the
base platform. On the other hand, as seen in Table 1, the vanishing of x0 and x1 in
one of the two modes confirm the corroboration with the results of [6].

Figure 2 presents a visual summary of the algebraic results, which can be consid-
ered as a new contribution of the present work. The curve C′(x,z) = 0 decomposes
into its components C′1(x,z) = 0 and C′2(x,z) = 0, signifying the two modes. Also,
the reflections of each mode at the z = 0 line are obvious in the figure. Thus, these
pictures provide a complete understanding of all the operations modes, and the as-
sembly modes therein. These interpretations can be extended easily into the domain
of singularity analysis and design.

4 Conclusion

This paper presents a geometric analysis of the 3-RPS manipulator. The manipulator
is decomposed into two kinematic sub-chains, and the forward kinematic problem
is formulated as the geometric problem of finding the intersections of the constraint
varieties generated by the individual sub-chains. A new result is revealed in the
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process, that the problem is equivalent to the intersection of a circle with a pair of
quad-circular octic curves in the plane of the circle. All the existing algebraic re-
sults reported in [4, 6, 7] are explained from the same geometric perspective. The
results show striking similarities with those known in the case of the planar 3-RRR
manipulator, whose forward kinematic problem is equivalent to the intersection of
a tri-circular sextic curve with a circle. On the other hand, other spatial manipula-
tors, such as the 3-RRS, which have architectural similarities with the 3-RPS, may
be analysed in the same geometric framework, leading, hopefully, to analogous re-
sults. Also, these geometric interpretations may lead to a better understanding of the
singularities of these manipulators, which is to be studied next.
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