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L
Abstract. This paper looks at the forward kinematics problem of the 3-RPS mant or a
geometric perspective. It shows that the problem is equivalent to finding the i i pair
of quad-circular octic curves with a circle. The results explain all the kno ic ¥©Esults in
this regard, and provide an intuitive insight into the nature of the solutions, e operation

modes, and the assembly modes inside each. The theoretical results are 4
example, where all the 16 assembly modes are real.
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1 Introduction \

Forward kinematic (FK) pro of the 3-RPS manipulator has been studied in
detail in the past [7, 2]. In gaeeent ibution, Schadlbauer et al. present a detailed
algebraic analysis using iy “parameter representation of SE(3), leading to
the identification of

e problem is proposed, in which the manipulator is
atic sub-chains, namely, a spatial RSSR chain, and a
problem reduces to the intersection of the circle generated

eports using this approach. The authors retrieve the fact that there
ossible assembly modes, counting the pair-wise mirrored modes at the
e. Also, the two operation modes reported in [6] show up in these results,
w and interesting manner. The geometric interpretation of the FK could lead
an intuitive understanding of the singularities of the manipulator, which is yet to

The rest of the paper is organised as follows: the geometric formulation of the
FK problem, followed by a numerical example is presented in Section 2. The new
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results are interpreted geometrically and corroborated with the existing results in
Section 3. Finally, the conclusions are presented in Section 4.

2 Geometric formulation of the FK problem

The FK problem is formulated below, as a geometric problem of finding the inter-
sections of a surface and a circle in R>.

2.1 Geometry of the 3-RPS manipulator QQ

[
The 3-RPS manipulator consists of three legs, each of which is an RP. jal
connected to the fixed platform b b, b3 by a revolute joint, and toghe*mov lat-
form p, p,p; by a spherical joint, as shown in Fig. 1a. The sai afe equi-
lateral triangles in shape, with circumradii b and a respectifely. T anipulator

has three degrees-of-freedom (DoF), which are activat ismatic actua-
tors denoted by I = [I},l,13]", while the revolute joi e pagsive. These joint
angles, denoted by @ = [¢1, 2, 93] form the unkngwnggfo bgfobtained as a result
of the FK problem. The fixed frame of referencg {A}, giv V 04-X Y AZ4, is at-
tached to the centre of the base platform, whil ing frame of reference {B},
by op-XpY pZp, is attached at the centre of the moving platform. The vertices of the

fixed and moving platforms are%n as;
Aby = [—Q —V3b O}T; and 4

[%cos 0, —@cos 0>, > singo
respectively.

The objective of the problem is to determine the position and orientation of
the moving i
be obtainedfro
to be formedifrelati
kinematigysub-Shaias

Aby Sl cos 41,0,y singy] ', Ap, = 4by +

.
=4p; + [%3 cos ¢3, @cosq)g,h sin¢3} ,

knoWledge of the inputs /;. Three independent equations need
; to [, which is accomplished below using the concept of

erivation of the constraints

e manipulator is hypothetically decomposed into two sub-chains, by removing the
pherical joint at point p;, as shown in Fig. 1. This leads to two hypothetically dis-
tinct points: p, , which is a coupler point of the spatial RSSR mechanism b, p, p3b3;
and p,,, which is the tip of the serial chain by p;. Obviously, the points p,, and p,,
must coincide to form the original point p; in the manipulator. Equivalently, the
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(a) 3-RPS manipulator (b) sub-chains

Fig. 1: 3-RPS manipulator decomposition into sub- cr%
locus of p,, which is a surface, must intersect the IOCA@%/ a circle in the

plane 04b; p; (see Fig. 1).

2.2.1 Derivation of the coupler surface, S =0

LetApsl :Apcl :Apl = [x,y,z]
which can be interpreted as the coy,
in terms of five unknown vari
satisfy the following constrainfs®

Oncg thegmputs l,, I3 are frozen, the locus of Ps,»
r strfacg of the said RSSR chain, is described
, namel¥y; ¢, ¢3,x,y,z. These variables need to

e The first constraint is
lent of noting that the '@

the closure of the RSSR loop. This is equiva-
between “ p, and “ p5 is equal to v/3a:

L 03%9,2) £ (“p3—"py) - (“p3 —"py) — 34> =0. )]

e The othe copstraints are derived from the fact that the locus of py , with
resp th ints p,ps, is a circle, in a plane that bisects p,p; perpendicu-
lagly. In t, this defines a virtual rigid link p,;p;,, which has a rotary joint
atp ith an axis aligned with p, p5. Orthogonality of the virtual link to p, p;

is captured by the constraint:

82(02,03.x,5,2) £ ("py3 —APsl) (*p3—"p,) =0. 2)

Rigidity of the virtual link leads to the third and final constraint:

83(02, 03,x,5,2) 2 (* pp3 —APsl) (“px3 —APsl) -—=0. 3
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The unknown ¢, is easily eliminated from Egs. (1,3), which are linear in sin ¢,
and cos ¢. This leads to the eliminant 4 (¢3,x,y,z) = 0, while substitution of sin ¢
and cos ¢, into Eq. (2) leads to hy(¢3,x,y,z) = 0. The function A is of degree four
in cos @3, sin @3, while £, is linear in these. Converting i; = 0 to their algebraic forms
in 73 = tan(¢3 /2) one obtains the equations s;(#3,x,y,z) =0, i = 1,2. The equation of
the coupler surface, S(x,y,z) = 0, which is of degree 20 in x,y,z and even powered
in z, is obtained by eliminating f3 between the last two equations. The process of
elimination is depicted in schematic (4) below:

$3—13
h1(¢3,X,y7Z)ZOEM(&X,)’,Z)ZO X—&)S(X,y,Z):O. (
h2(¢3,x,y,z) =0—— 52(t3aX,yaZ) =0

9313 ([ ]

The symbol ‘—— denotes the conversion of the equations preceding inQ
imination of

algebraic form in #3 = tan(¢3/2). The symbol AN represents t i
the variable 73 from the equations preceding it.

2.2.2 Derivation of the circular constraint, C =0
The point p., describes a circle in the plane 04bipy, b e of the rotary joint
at by. This can be captured in terms of algebrai ations as follows.

e Rigidity of leg 1 (given the input /), expressed in terms of the leg-length con-
straint, describes a sphere of r@s , centered at by:
A

Gi(x,y.2) = (", —"NA P, — 1) 17 = 0. (5)

e Axis of the rotary joint is ey, =[0,1,0]", which leads to the planarity
constraint:

)& (“p, —"b1) ey, =0 ©)

=y=0. @)

The locug,of t it p,, is established as a circle of radius /; centered at by, by

cuttin here'in Eq. (5) by the plane y = 0. The equation of the circle, denoted

obtained by substituting y = 0 in Eq. (5).

2.3 Derivation of the Forward Kinematic Univariate (FKU)

The FK problem may be solved by computing the intersections of the surface S =0
with the circle C = 0. However, the same may also be reduced by first cutting the
surface S = 0 by the plane y = 0 to obtain the curve C' = 0 in the X4Z4 plane,
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and then obtaining the intersections of C' = 0 with C = 0. An advantage of this
approach is that the curve C’ = 0 decomposes into three components (see Fig. 2 for
an illustration, and Section 3 for a detailed interpretation of the same), as shown in
schematic 8:

y—0
S(x,y,2) =0 —— C'(x,2) = C(x,2)C} (x,2)Ch (x,2) = 0. ®)

The component Cj(x,z) = (x+2b)* + z> = 0 admits a real solution iff x = —2b and
z = 0. For these values of x, z the constraint equations given by Eqgs. (1,2,3,5) in
Sections 2.2.1, 2.2.2 are consistent iff the input parameters satisfy the following
conditions:

=10 =3a*—-3b°, I} =9b°.
[

The conditions in Eq. (9) correspond to the finite self- motion of tl a 4
tor reported in [5]. Hence, the factor C6 is ignored in the followi i
implications of the said factor in relevance to the sub-chains
in [1]. The components C;,i = 1,2 are of degree 8 in x,z
two operation modes of the manipulator. Bézout limit pu ssible number of
intersections with a circle at 16. However, the compon " 3&cribe very spe-
cial octic curves—these are quad-circular in nature 4T’ ored/4 pairs of points of
intersection lie in the plane at infinity, thus limifing\the er of finite complex
solutions to only 8, per mode.

Vanishing of the resultant of C} (x,z) with C(x,z) W-F. x leads to the desired FKU

in closed-form, whereupon it is observed that
in 72, and they maintain the relationship:

Si(a) = &(—a), (10)

where a ig the adius of the moving platform.

umerical example

e formulation presented above is illustrated for the following set of numerical
alues:a=1/2,b=1,1; =11/5,1, =23/10 and I3 = 12/5. The length dimen-
sions are scaled by the radius of the circum-circle of the base triangle, b, rendering
them unit-less, while all angles are measured in radians. It may be noted that the
rational values of the numeric parameters help in retaining the exact nature of the
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Table 1: Sixteen real solutions to forward kinematics problem

Operation| Assembly
mode mode z X 01 (03} 03 X0 X1

1 2.1970.889 | 1.520 | 0.899

2.139(0.485 | 1.335|1.355
-2.139|0.485 |-1.335|-1.355
1.597 {-0.513] 0.812 | 1.390
-1.597(-0.513]-0.812(-1.390

2 -2.197|0.889 |-1.520(-0.899
3 1.7211-0.371| 0.898 | 1.465
Mode 1 4 -1.721|-0.371|-0.898 |-1.465
5 1.660 |-0.443| 0.855 | 0.829
6 -1.660(-0.443]-0.855(-0.829
7 1.627 |-0.480| 0.833 | 0.853
8 -1.627|-0.480|-0.833-0.853
1 2.178 | 0.687 | 1.428 | 0.781
2 -2.178|0.687 |-1.428(-0.781
3 2.1650.609 | 1.392 | 1.298
Mode 2 ésl -2.165|0.609 |-1.392-1.298
6
7
8

@onstraint geometries in the plane X,Z4: C, =0and C =0
mpytation up to the values of the coefficients of the FKU equations. The monic
forms of these, for the given values, are!:

! Though the coefficients are obtained as exact rational numbers, their real approximations are
presented here for the want of space.
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& =u* —13.193u> +63.689u> — 134.113u + 104.347,
& = u* —16.554u +101.072u* — 268.351u +259.275, where u = z°.

Each operation mode contains 8 real assembly modes for these numbers. The re-
sults have been tabulated in Table. 1. The solutions are visualised as the points of
intersection of the constraint curves C{ =0and C =0, as seen in Fig. 2.

3 Interpretation of the results and correlation with existing ones

The algebraic properties of the FKU of the 3-RPS manipulator have been s
and reported at length. Yet, there has been no attempt to bring outthe co
between these results, and to visualise them geometrically. For instanceg[6]
the two operational modes, each characterised by the vanishing of

from the constraint equations in the joint-space, and it is fou
in two components, g; and g;, where g;(a) = g2(—a), i
the moving platform. It may be noted that this is consi i e findings in [6],
since a going to —a is identical in effect with the Mipp e moving platform
up-side down, which is same as the 7-screw motion dascribed in [6]—in either case,
a CCW distribution of the vertices p;, p,, p3 cha to a CW one.

The results of the present work corroborate and unify all of the results on FK
reported in [6, 4]. The relationship wi esults in [4] is captured by Eq. (10),
where &; play the roles of g; in }[&A
powers in either mode, signifyin manipfator poses are reflected pairwise at the
base platform. On the other h as seen in Table 1, the vanishing of x¢ and x; in
one of the two modes conf] boration with the results of [6].

Figure 2 presents a vis y of the algebraic results, which can be consid-
ered as a new,contri ¢ present work. The curve C'(x,z) = 0 decomposes

S
(@]
=
=
o0
[}
e
g
=
w
o
=4

clusion

his paper presents a geometric analysis of the 3-RPS manipulator. The manipulator
is decomposed into two kinematic sub-chains, and the forward kinematic problem
is formulated as the geometric problem of finding the intersections of the constraint
varieties generated by the individual sub-chains. A new result is revealed in the
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process, that the problem is equivalent to the intersection of a circle with a pair of
quad-circular octic curves in the plane of the circle. All the existing algebraic re-
sults reported in [4, 6, 7] are explained from the same geometric perspective. The
results show striking similarities with those known in the case of the planar 3-RRR
manipulator, whose forward kinematic problem is equivalent to the intersection of
a tri-circular sextic curve with a circle. On the other hand, other spatial manipula-
tors, such as the 3-RRS, which have architectural similarities with the 3-RPS, may
be analysed in the same geometric framework, leading, hopefully, to analogous re-
sults. Also, these geometric interpretations may lead to a better understanding of the

singularities of these manipulators, which is to be studied next. Q
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