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Abstract. This paper deals with the kinematic analysis, dynamic modeling and base inertial param-
eter determination of a member of multipteron parallel manipulator family, namely, Quadripteron.
First, as a prerequisite for dynamic analysis, kinematic relations are obtained. By using a new ge-
ometric approach, the solution of the inverse kinematic problem is made equivalent to solve the
problem of determining the intersection of two circles within a plane. Compared to other proposed
methods, this approach yields more compact and closed-form solutions. The instantaneous kine-
matic problem is solved via employing the screw theory. Based on foregoing kinematic relations
and the concept of link Jacobian matrices, the dynamic model is formulated by means of the prin-
ciple of virtual work. Furthermore, in order to obtain a more compact formulation for the dynamic
analysis, a reduced dynamic model is obtained by determining the base inertial parameters of the
under study manipulators.

Key words: Parallel robots, Kinematics, Screw theory, Dynamic model, Base inertial parameters

1 Introduction

It is well known that, compared to serial robots, parallel manipulators can offer
several advantages in terms of better rigidity, higher precision and better dynamic
performances. Due to the widespread application of industrial robots performing
Schönflies motion pattern, several researches have been conducted on the synthesis
and prototyping of parallel or hybrid manipulators featuring the Schönflies motions.

The H4 robot, a fully parallel Schönflies motion generator, was introduced [1].
Also, the (fully parallel) Kanuk and the (hybrid) Manta architectures were pro-
posed [2]. All of the aforementioned architectures were developed mainly based
on intuition. In [3], a synthesis method based on screw theory was presented and a
large number of other new architectures were discovered. In [4], a quasi-decoupled
4-DOF Schönflies motion generator was proposed, based on the type synthesis pre-
sented in [3]. This architecture, referred to as the Quadrupteron, is of the 4-PRRU
type. Here and throughout this paper, in order to represent the kinematic arrange-
ment of a limb, P, R and U stand for a revolute, prismatic and universal joints,
respectively, where the actuated one is underlined.
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Several studies concerning the Quadrupteron have been carried out over the
last decade, however, most of researches are related to their kinematic properties,
namely, direct and inverse kinematics, workspace and singularity analysis [4–6].
While the kinematic analysis is an essential and indispensable step in studying a
multibody system, in many applications such as simulation and model-based con-
trol strategies, an accurate knowledge of the dynamic behavior of the manipulator is
a definite asset. To the best knowledge of the authors, as far as Quadrupteron is con-
cerned, there is still a gap on the dynamic analysis of this type of mechanism. There
are several approaches for formulating the dynamic model of a multibody system,
some of which are: Newton-Euler, the Euler-Lagrange formulation, the principle
of virtual work, Kane’s method and Natural Orthogonal Complement (NOC) ap-
proach [7].

While the mathematical structure of the dynamic model can be formulated with
the above-mentioned approaches, one of the main factors affecting the accuracy
of the results, is the exactness of the values of the physical parameters used in the
model. It is well-known that not all the inertial parameters have a direct effect on the
dynamic response of the system. Therefore, only a set of identifiable parameters can
be estimated. The minimal set of identifiable parameters, which are often referred to
as base inertial parameters, can be determined symbolically or numerically [8, 9].
The determination of the base inertial parameters also contributes in reducing the
computational cost of the dynamic models, as it eliminates or groups the original
inertial parameters [8].

The main contribution of the this paper can be regarded as: 1) Proposing a new
geometric approach to solve the position analysis of the under study manipulators
which leads to a compact solution for the inverse position problem. 2) Obtaining the
dynamic model of a member of multipteron parallel manipulator family, namely,
Quadrupteron, in a closed and unified form. 3) Minimizing the computational cost
of the dynamic model by obtaining the base inertial parameters of the under study
manipulator and reducing the dynamic models without loosing the accuracy of the
models.

2 Position analysis

The Quadrupteron, represented schematically in Fig. 1(a), is a 4-DoF parallel mech-
anism capable of producing the Schönflies motions. The Quadrupteron is composed
of 4 legs of the PRRU type attached to an end-effector. In one of the legs (Leg 1 in
Fig. 1)(a), the last U joint degenerates into an R joint.

In this section, as the first step of obtaining the kinematic relationships, the In-
verse Displacement Problem (IDP) is addressed. Even though the Quadrepteron
have been studied before [5, 6], a simple closed-form analytical solution is clearly
preferred. Such a solution is not only more efficient with regard to computational
cost, but also gives a valuable geometric insight for the design. In this regard, a new
geometrical method is proposed which results in a general closed-form solutions for
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(a) An overall schematic of the manipulator
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(b) Kinematic model of an arbitrary leg

Fig. 1: The Quadrupteron: a 4-DOF Schönflies-motion parallel mechanism.

the IDP. Before proceeding with the analysis, the following lemma is presented:

Lemma 1. Suppose d̂ is a known unit vector and u, lu and ll are vectors in a plane
perpendicular to d̂, satisfying lu+ ll = u. Assuming that u and length of lu and ll are
known, there are two possible solutions for lu and ll:

lu =
1

2‖u‖

{(
‖u‖2 + lu2− ll2

)
û±√

(‖u‖+ lu + ll)(−‖u‖+ lu + ll)(‖u‖− lu + ll)(‖u‖+ lu− ll)
(
d̂× û

)} (1)

ll =
1

2‖u‖

{(
‖u‖2 + ll2− lu2

)
û∓√

(‖u‖+ lu + ll)(−‖u‖+ lu + ll)(‖u‖− lu + ll)(‖u‖+ lu− ll)
(
d̂× û

)} (2)

where lu and ll are respectively the length of lu and ll1.

Remark 1: The solution given in Lemma 1 is the same as finding the intersection
of two circles in given plane with known diameters.
Remark 2: If the expression under the radical sign in Eqs. (1) and (2) become
negative there is no real solution for lu and ll . From a geometrical standpoint, this
condition takes place when the two circles have no intersection.

In what follows, we will illustrate how Lemma 1 is used to solve the IDP of the
under study manipulators. Referring to Fig. 1(b), the following equation can be es-
tablished for the ith leg:

ri +ρid̂i +ui = p+ si (3)

1 This lemma can be easily verified by substituting Eqs. (1) and (2) into lu + ll = u, d̂.lu = d̂.ll =
d̂.u = 0 and lu

‖lu‖ =
ll
‖ll‖

= 1 . To the best knowledge of the authors, content of this lemma is not
available in the literature.
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Fig. 2: Screw axes associated with PRR(RR) kinematic structure.

By dot multiplying both sides of Eq. (3) with d̂i and considering the fact that ui is
perpendicular to d̂i, the following equation is obtained:

ρi = (p+ si− ri) .d̂i (4)

The latter equation represents the relationship between the pose of the end-effector
and position of the ith actuated P-joint. In addition, by substituting Eq. (4) into
Eq. (3), ui can be obtained as:

ui =
(
13×3− d̂id̂T

i
)
(p+ si− ri) (5)

According to Fig. 1(b), ui, lui and lli are vectors in a plane perpendicular to d̂i,
satisfying lu + ll = u. Hence, by using Lemma 1 one can obtain lui and lli as:

lui =
1

2‖ui‖

{(
‖ui‖2 + lui

2− lli2
)

ûi±√
(‖ui‖+ lui + lli)(−‖ui‖+ lui + lli)(‖ui‖− lui + lli)(‖ui‖+ lui− lli)

(
d̂i× ûi

)}
(6)

lli =
1

2‖ui‖

{(
‖ui‖2 + lli2− lui

2
)

ûi∓√
(‖ui‖+ lui + lli)(−‖ui‖+ lui + lli)(‖ui‖− lui + lli)(‖ui‖+ lui− lli)

(
d̂i× ûi

)}
(7)

3 Instantaneous kinematics analysis

One of the requirements for obtaining the dynamic model by using the virtual work
principal, is to derive the relationship between the twist of all of the manipulator’s
parts with a suitable reference, such as twist of the end-effector. In this section,
by employing the screw theory, the instantaneous twist of each link and the input
velocities will be calculated with respect to end-effector’s twist.

According to Fig. 2, which depicts a kinematic chain with PRR(RR) structure
which resembles the ith leg of Quadrupteron, the unit joints screws of the ith leg can
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be written as:

$̂$$Pi =

[
0
d̂i

]
; $̂$$R1,i =

[
d̂i

(si− lui− lli)× d̂i

]
; $̂$$R2,i =

[
d̂i

(si− lli)× d̂i

]
$̂$$R3,i =

[
d̂i

si× d̂i

]
; $̂$$R4,i =

[
ĉi

si× ĉi

]
;

(8)

Now, considering each branch as an open-loop chain and expressing the instanta-
neous twist of the end-effector, $$$E , in terms of the joint screws, gives:

$$$E = $̂$$Piρ̇i + $̂$$R1,iθ̇R1,i + $̂$$R2,iθ̇R2,i + $̂$$R3,iθ̇R3,i + $̂$$R4,iθ̇R4,i (9)

In order to obtain the relationship between the output twist, $$$E , and the input joint
velocities, one should eliminate the passive joint screws from Eq. (9). To do so, both
sides of Eq. (9) is left multiplied by a wrench, reciprocal to the passive joints, i.e.,
ξξξ

T
i =

[
(si× d̂i)

T d̂T
i

]
. Hence, the relationship between the twist of the end-effector

and the linear velocity of the prismatic joints can be obtained as:ρ̇1
...

ρ̇4

=

d̂T
1
(
d̂1× ĉ1

)
.s1

...
...

d̂T
4
(
d̂4× ĉ4

)
.s4

[ṗ
φ̇

]
= J

[
ṗ
φ̇

]
(10)

where J is called the input-output Jacobian matrix.
Also, taking the time derivative of Eq. (3) and dot multiplying both sides of the
resulting equation by lli and lui results in:

[
vUi

θ̇uid̂i

]
=

 d̂id̂T
i d̂id̂T

i (ĉi× si)

d̂illiT

(lui× lli) .d̂i

d̂isi
T (lli× ĉi)

(lui× lli) .d̂i

[ṗ
φ̇

]
= Jui

[
ṗ
φ̇

]
(11)

[
vLi

θ̇lid̂i

]
=

 13×3 k̂× si

d̂ilui
T

(lli× lui) .d̂i

d̂isi
T (lui× ĉi)

(lli× lui) .d̂i

[ṗ
φ̇

]
= Jli

[
ṗ
φ̇

]
(12)

where Jui and Jli are respectively the ith upper and lower link Jacobian matrices.
Also, θ̇ui and θ̇ui are respectively the magnitude of angular velocities of the ith upper
and lower link.

4 Dynamics analysis

In this section, the dynamic model of the under study manipulators are formulated
by means of d’Alembert’s form of the principle of virtual work. Figure 3 depicts the
coordinate frames attached to the ith upper and lower links. The position of the center
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Fig. 3: Local coordinate frames assigned to each link.

of mass of the ith upper link, lower links and end-effector relative to their reference
points are respectively denoted by γγγui, γγγ li and γγγe. Assuming that the friction forces
and torques at the joints are negligible, using the principle of virtual work,referring
to the manipulator Jacobian matrix, given in Eq. (10), and link Jacobian matrices
given in Eqs. (11) and (12), dynamics of the under study manipulator can be stated
as:

Fa =−F̃p−J−T(
4

∑
i=1

Jui
TFui +

4

∑
i=1

Jli
TFli +Fe) (13)

where Fa =
[
Fa1 · · · Fa j

]T is the vector of input forces and F̃p is:

F̃p =
[
mp1(d̂1.g− ρ̈1) . . . mp j(d̂4.g− ρ̈4)

]T (14)

And Fui, Fli and Fe represent the resultant of applied and inertia forces exerted to
the reference point of the ith upper link, ith lower link and the end-effector.

Equation (13) denotes the relation between the actuators’ forces and the applied
and inertia wrenches acting on the manipulator.

Now by using a method based on principle of virtual work [10], the dynamic
model given in Eq. (13) is rewritten in a linear form:

Fa = J−T [JTΩΩΩ p Ju1
T

ΩΩΩ u1 · · · Ju j
T

ΩΩΩ u j Jl1
T

ΩΩΩ l1 · · · Jl j
T

ΩΩΩ l j ΩΩΩ e
]

P (15)

where ΩΩΩ p, ΩΩΩ ui, ΩΩΩ li and ΩΩΩ e are matrices which are functions of kinematic proper-
ties of the manipulator and P =

[
pp pu1 . . . pu j pl1 . . . pl j pe

]
in which the entries

are defined as:

pp =
[
mp1 · · · mp j

]T; pui =

 mui
mui

Uiγγγui
UiIui(z)

 ; pli =

 mli
mli

Liγγγ li
LiIli(z)

 ; pe =

 me
me

Pγγγe
PIe(z)

 ; (16)Author's
 vers
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Table 1: Base inertial parameters of the Quadrupteron parallel manipulator.

Base
Inertial
Parameters

Linear Combination
Base
Inertial
Parameters

Linear Combination

Pb1 mp1 +mu1 +20.11L1Il1(z) Pb14
U4Iu4(z)+0.91L4Il4(z)

Pb2 mp2 +mu2 +38.58L2Il2(z) Pb15

ml1 − 20.11L1Il1(z) + ml4 −
38.58L4Il4(z) + 12.5me

Pγe(x) −
12.5me

Pγe(y)+312.5PIe(z)
Pb3 mp3 +mu3 +35.86L3Il3(z) Pb16 ml1

L1γl1(x)+4.48L1Il1(z)
Pb4 mp4 +mu4 +38.58L4Il4(z) Pb17 ml1

L1γl1(y)

Pb5
U1Iu1(z)+0.83L1Il1(z) Pb18

ml2 − 38.58L2Il2(z) − ml4 +

38.58L4Il4(z)−25me
Pγe(x)

Pb6 mu2
U2γu2(x)+5.94L2Il2(z) Pb19 ml2

L2γl2(x)+6.21L2Il2(z)
Pb7 mu2

U2γu2(y) Pb20 ml2
L2γl2(y)

Pb8
U2Iu2(z)+0.91L2Il2(z) Pb21

ml3 − 35.85L3Il3(z) + ml4 −
38.58L4Il4(z) + 12.5me

Pγe(x) +

12.5me
Pγe(y)+312.5PIe(z)

Pb9 mu3
U3γu3(x)+5.99L3Il3(z) Pb22 ml3

L3γl3(x)+5.99L3Il3(z)
Pb10 mu3

U3γu3(y) Pb23 ml3
L3γl3(y)

Pb11
U3Iu3(z)+

L3Il3(z) Pb24 ml4
L4γl4(x)+6.21L4Il4(z)

Pb12 mu4
U4γu4(x)+5.94L4Il4(z) Pb25 ml4

L4γl4(y)
Pb13 mu4

U4γu4(y) Pb26 me−625PIe(z)

5 Base inertial parameter determination

The dynamic model given in Eq. (15) is linear with respect to inertial parameters
and it can be rewritten as τττ =DP, where P is the vector of inertia parameters and
D is called the dynamic matrix. As aforementioned, not all of the parameters will
directly affect the dynamic model. Thus, by eliminating or grouping the parameters,
one can reduce the number of inertial parameters. This reduced set of parameters
is known as the base inertial parameters. In this section, the SVD-based approach
given in [8] was used to determine the base inertial parameters of the Quadrupteron
manipulator. The relation between the base inertial parameters and the original pa-
rameters is shown in Tables 1. It should be noted that, the parameters given in the
aforementioned tables are not the only possible set for base inertial parameters and
any invertible linear combination of them can be regarded as a new set of base iner-
tial parameters.

By using the base inertial parameters, the dynamic model represented by Eq. (15)
is reduced to τττ =DredPred, where Dred is the reduced dynamic matrix after elimi-
nating and grouping the inertial parameters and Pred is the vector containing the base
inertial parameters. It is worth mentioning that by comparing the computational time
of the reduced dynamic model with the complete dynamic model, it follows that the
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reduced dynamic model is approximately 41% faster than the original virtual work
model.

6 Conclusion

In this paper, the kinematic and dynamic model of Quadrupteron parallel manipula-
tor was derived. As a prerequisite to dynamic analysis, the kinematic analysis was
performed which was investigated by resorting to the screw theory. The reason for
which screw theory was adopted as kinematic investigation tool is that it provides a
Jacobian-base formulation for mapping of the time rate changes of all joints, includ-
ing passive and actuated, which is essential for dynamic analysis based on virtual
work concept. Also, a new geometrical approach based on the intersection of two
circles within a plane, was presented which resulted in a compact closed-form solu-
tion for inverse kinematic problems. The dynamics of the manipulator was modeled
using virtual work principle. Expressing the dynamic model in a linear form with
respect to inertial parameters enabled us to determine the base inertial parameters
and reduce the dynamic model which reduced the computation time by 41%.
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