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Abstract. Due to their high precision and dynamic properties, parallel kinematic manipulators
(PKM) are particularly suited for high-speed and high-accuracy object handling. In order to im-
prove their stiffness, their payload capacity and their accuracy PKM can be optimized by using a
redundant actuator configuration. Accordingly, additional actuators are added to PKM in order to
generate an optimized performance. The objectives, in this context, are highly task dependent and
can involve a wide range of the robot’s topological and morphological parameters. Based on differ-
ent tasks and optimization targets, robots with unique specifications can be designed. In this study
redundancy is used to show the effect of topological parameters of redundantly actuated DELTA-
type manipulators on general performance characteristics, such as the energy consumption of the
robot. The topological characteristics of n-RRPaR manipulators in combination with actuator ca-
pabilities are considered as variables. It is shown that by choosing a proper topology, it is possible
to achieve a higher performance by an intelligent usage of different torque distributions that may
result in a more efficient energy consumption.
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1 Introduction

The quality and performance of industrial robots and manipulators commonly is
measured by their maximum payload, maximum handling velocity or by their pre-
cision given in a certain workspace. In terms of accuracy of fast object handling,
parallel kinematic manipulators (PKM) are preferred to their serial counterparts due
to their excellent precision, dynamics characteristics and stiffness regardless of their
relatively small workspace [1]. Generally, these manipulators are equipped with a
task-depended number of actuators represented by the required degree of freedom
(DoF) [2]. In contrast, redundantly actuated parallel kinematic manipulators (RA-
PKM) use more actuators than needed (over-actuated) in trade-off for a higher stiff-
ness resulting in a higher precision and a more efficient torque distribution.

Over actuation of parallel kinematic manipulators can be achieved by means of
branch and in-branch actuation redundancy ([3], [4]). In the context of the current
study, an n-RRPaR (n≥ 3) structure is analyzed, which is also known as a DELTA-
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type branch-redundant PKM. Manipulators of the n-RRPaR-type are able to execute
motion tasks in three translational degrees of freedom (DoF) as a result of their
specific structure including parallelogram members [5].

Characterizing the manipulator based on time is of importance to optimize their
performance in many aspects as object handling and assembly [6], which are dis-
cussed for the presented manipulator in Sections 2 and 3.

The objective to be pursued in current study is the effect of redundancy on gen-
eral performance characteristics, such as the force capability of n-RRPaRs. Two
topologies with one and three degrees of redundancy are introduced [4], of which
the one with four arms is supposed to be reconfigurable. There are different meth-
ods to study the force capability of (redundant)-PKM in which the screw theory
is widespread used [7], [8], [9]. The procedure used in this contribution is mainly
based on the one introduced by [4].

2 Inverse Kinematics

Determining the joint space parameters of the n-RRPaR by given operational space
parameters is discussed in this section. The special case of n = 3 with uniformly
distributed arms characterises the conventional DELTA robot. The joint space pa-
rameters q of the manipulator can be extracted in the same way as DELTA robot.
The kinematic parameters of the active and passive joints are as (see Figure 1):
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qi = tan−1
(
−κ iri,x + ζ iri,z

ζ iri,x + κ iri,z

)
with:

{
ζ = l2,i sin(φ3,i) cos(φ2,i) + l1,i
κ = l2,i sin(φ3,i) sin(φ2,i)+ l1,i

(1c)

The time differentiation of the closed form equation of the end-effector position
can be exploited in order to determine the angular velocity of the crank and forearms
of each linkage:

Pee = l1,i + l2,i + a − b ∴ Ṗee = q̇i × l1,i + ω2,i × l2,i, (2)

where q̇i and ω2,i are the rotational velocities of the crank and forearm of branch i
respectively. The vector ω2,i × l2,i turns to zero by post dot multiplying both sides
of (2) by l2,i due to perpendicularity. Using the equation for angular velocity of the
active joint (Ri is the rotation matrix of branch i of the manipulator to the global
coordinate system and Ri|2 represents the second column of matrix Ri):

q̇i = Ri q̇i [0 , 1 , 0]T = q̇i Ri|2, (3)
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and replacing the cross multiplication by the asymmetric matrix product (repre-
sented by [•]c), (2) can be rewritten in algebraic form:

lT2,i · Ṗee = lT2,i
(
q̇i[Ri|2]

c l1,i
)
. (4)

Stacking (4) for different linkages results in (the dimensions are inserted for clarity):[ [
lT2,r
]
(1,3) ⊗ 1(n,1)

]
(n,3)
· Ṗee(3,1) =

[
q̇r ⊗ In

]
(n,n)
·
[ [

lT2,r
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(1,3) ,⊗In

]
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·
[
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]
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·
[
[ l1,r ](1,3) ⊗ 1(n,1)

]
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,

(5)
where the operator ⊗ represents the Kronecker product and the subscript r deter-
mines the row-index of the succeeding matrix. in order to simplify (5), the auxiliary
matrix [Jaux] can be introduced as:[ [

lT2,r
]
(1,3) ⊗ 1(n,1)

]
(n,3)
· Ṗee(3,1) = [ q̇r ⊗ In ](n,n) · [Jaux](n,1) . (6)

Since the relation between workspace and joint space velocities is of interest, the
right hand side of (6) can be rearranged according to:[ [

lT2,r
]
(1,3) ⊗ 1(n,1)

]
(n,3)
· Ṗee(3,1) = [Jaux(r,1) ⊗ In ](n,n) ·

[
q̇r ⊗1(n,1)

]
(n,1) . (7)

The matrix [Jaux(r,1) ⊗ In ](n,n) in (7) is a full rank diagonal matrix. Therefore, pre-

multiplying both sides of (7) by [Jaux(r,1) ⊗ In ]
−1
(n,n) results in the Jacobian matrix:

[
q̇r ⊗1(n,1)

]
(n,1) = [Jaux(r,1) ⊗ In ]

−1
(n,n)

[ [
lT(2,r)

]
⊗ 1(n,1)

]
(n,3)
· Ṗee(3,1), (8)

or in short form: [
Q̇
]
(n,1) = [Jv](n,3) · Ṗee(3,1). (9)
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3 Inverse Dynamics

Considering the n-RRPaR as a time-invariant holonomic mechanical system, the
principle of virtual works can be used to generalize the inverse dynamic. Accelera-
tion of active and passive joints can be derived by second time derivation of (2):

P̈ee = q̈1,i × l1,i + q̇i × (q̇i × l1,i) + ω̇2,i × l2,i + ω2,i × (ω2,i × l2,i) . (10)

Post dot-multiplying (10) by l2,i and performing algebraic simplifications, the joint
space acceleration given work space acceleration can be presented:

q̈i =
lT2,i
(
P̈ee + (q̇i · q̇i) l1,i + (q̇i · q̇i) l2,i

)
lT2,i [Ri|2]c l1,i

∴ q̈1,i = q̈i Ri|2. (11)

The angular acceleration of the forearm can be obtained, rearranging (10).
After defining the velocity and acceleration vectors, the force and moments as-

sociated to the end-effector and linkages can basically be driven in the same manner
as the one for conventional topology of DELTA structures (for details see [10]):

0 = δ [Q]T(1,n) [τ](n,1) + δ [Xee]
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)
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)
. (12)

In (12) τ is the vector of manipulator torques, g represents the gravity, I is the
inertia matrix, a stands for accelerations and subscript c refers to the center of mass.
δ [Xee], δ i[Xl1,i ] and δ i[Xl2,i ] refer to infinitesimal deviations of the end-effector and
the center of mass of the cranks and forearms respectively. δ [Xee] can be defined
by means of the system Jacobian matrix as shown in (9). The link Jacobians J∗v1
and J∗v2, which relate the velocities of each link’s center of mass to the work space
velocity vector, are deployed for simplification:

{δ [Q], δ
i[Xl1,i ], δ

i[Xl2,i ]} = {[Jv] , [J∗v1] , [J
∗
v2]} δ [Xee] . (13)

Shortening the summation (∑ ) part of (12) as link dynamics (LD) results in:

0 = δ [Xee]
T
(1,3) [Jv]

T
(3,n) [τ](n,1) + δ [Xee]

T
(1,3) [mee

(
g − P̈ee

)
](3,1) + δ [Xee]

T
(1,3) LD.

(14)
Thus, the dynamic burden of actuators can concisely be formulated as:

[τ](n,1) = − [Jv]
+T
(3,n)

(
[mee

(
g − P̈ee

)
](3,1) + LD

)
, (15)
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where [ ]+ symbolizes the pseudo inverse.

4 Force capability

The topological structure of the n-RRPaR can be optimized with regard to different
tasks considering an appropriate objective function. One of the possible objectives
can be considered as the reachable force of the manipulator. In this section, the
overall procedure in order to compute the force capability of the manipulator, with
a concise formulation for the general structure, is sketched and discussed .

The classical relation between torque and force can be written for the cranks:

iMi =
il1,i × iFi. ∴ iFi = −

1
l2
1,i

il1,i × iMi. (16)

In (16), iFi represents the resultant force of the actuator in the local coordinate
system and:

il1,i = l1,i
[
c (qi), 0, s (qi)

]T
, iMi = Ti

[
0, 1, 0

]T
, (17)

with Ti being the applicable torque of the ith actuator. To transfer the equation to
algebraic form, cross multiplications are replaced with the asymmetric matrix prod-
uct. Simultaneously, the forces are transferred to the global coordinate system:

Fi = −
1

l2
1,i

Ri
[il1,i]c iMi = JF,i

iMi, (18)

where JF,i refers to the force Jacobian.
Considering the rods of the forearm as rigid bodies, which prevents the energy

loss, the contribution of each actuator to the end-effector’s force capability is equal
to Fi. Thus, the force capability of the manipulator on the end-effector results from
summing up the individual forces:

F(3,1) =
[
I3 ⊗ 11,n

]
(3,3n)

·
[
JF,r⊗ In

]
(3n,3n)

·
[
Conversion Matrix

]
(3n,n)

·
[
τ

]
(n,1)

,

(19)
where index r in JF,r refers to the row index of the succeeding matrix and

[Conversion Matrix] is a sparse matrix containing ones at the indices (3(i−1)+2 , i)
with i = 1, . . . , n.

The method of scaling factors can be used to compute the maximum force capa-
bility of the manipulator [8], [7], [4]. In this method, the required torque to impose
a force in a predefined direction of interest is computed by means of (19). The com-
puted torques can be scaled by the factors resulting from the ratio of maximum
applicable torques to the required amount and lastly the force is to be recalculated
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by (19). In the present study, the Jacobian’s null-space resolution is also used to
optimize the maximum force as the one introduced in [9].

5 Results

To examine the presented idea two types of structure topologies are introduced in
this section. The first structure is a 4-armed manipulator with varying torque ca-
pacity of actuators and adjustable configuration. The second structure is a 6-armed
manipulator and considered to have a variable torque capacity of actuators. Different
topologies and actuator capacities are listed in Table 1. The 4-armed manipulators
in the three scenarios 4n− 1 to 4n− 3 have evenly distributed branches (i .e. α in
Figure 1) and are supposed to have actuators with different torque capacities (the
nominal torque of actuators are supposed to be 100 Nm). The remaining scenar-
ios involve manipulators with varying topological configurations, with all actuators
working with 100% capacity. The topology of the 6-armed manipulator is supposed
to be unique (with evenly distributed arms) with varying capacities of actuators. For
clarity, the topology for cases 4n−3 to 4n−6 are shown in Figure 2.

Table 1 Percentage of applicable torque of actuators in different simulation configurations

α 0 π

8
π

4
π

3
3π

8
π

2
5π

8
2π

3
3π

4
7π

8 π
9π

8
5π

4
4π

3
11π

8
3π

2
13π

8
5π

3
7π

4
15π

8

4n−1 100 10 100 10
4n−2 50 50 50 50
4n−3 100 100 100 100
4n−4 100 100 100 100
4n−5 100 100 100 100
4n−6 100 100 100 100
6n−1 100 10 100 10 100 10
6n−2 50 50 50 50 50 50
6n−3 100 50 100 50 100 50
6n−4 100 100 100 100 100 100

Figure 2 shows the force distribution of a 4-armed manipulator, in which all the
actuators are working with full power, in a plane in the middle of the workspace
(z =−0.775 m). Two main topologies are selected, which are oriented complimen-
tary to each other (i .e. 4n− 3 with 4n− 5 and 4n− 4 with 4n− 6). A preliminary
examination exhibits choosing an appropriate orientation of the manipulator in a
specific application can enhance the force capability of the manipulator in a direc-
tion of desire considerably. For instance, although the manipulators of cases 4n−3
and 4n−5 have a similar topology and the actuator capacities are the same, with a
same z-force capability, there is almost 42% improvement in x and y-force capabil-
ities for 4n− 5. The fact also holds for the manipulator with non-homogeneously
distributed arms.
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Fig. 2 4-armed manipulators with configurations 4n−3 to 4n−6

The force capabilities for the 4-armed manipulators are also computed all over
the workspaces. The force expectations in different directions are shown in Figure
3. A comparison between 4n−1 and 4n−2 emphasizes on the importance of a well
torque distribution and proves the advantages of task-oriented manipulators design.

The statistical study of the cases with 6 arms are also presented in Figure 3.
The results are obtained from the examination of force capabilities in the effective
workspace of the manipulator. Cases 6n−1 and 6n−2 show comparable force ca-
pabilities with a smoothly distributed torque capacity in case 6n− 2. Doubling the
actuation of three actuators in 6n−2 results in almost 50% higher force capability in
case 6n− 3, but further doubling the actuation of remaining actuators would result
in almost 32% more improvement (the force capability of 6n−4 is twice as 6n−2).

6 Conclusions

This study intends to examine the effect of actuation redundancy and topological
configuration of a DELTA-type parallel manipulator on its kineto-statics perfor-
mance. It is shown that a task oriented topological design of the robot can remark-
ably enhance its force capability. Furthermore, over-actuated manipulators proved
to have a smooth torque distribution for specific performances, which may lead to
more resource-efficient processes.

Further research in this field is accomplished by examining the manipulator flex-
ibility by different topologies. Optimizations are to be performed to achieve a high
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Fig. 3 Statistical examination of selected structures presented in Table 1

precision concerning the end-effector, adhering a high performance and energy-
efficient task-oriented manipulation. The morphology of the robot can be deter-
mined, taking different objectives into consideration.
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