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Abstract. Based on the condition for four points to lie on the unit sphere, derived using
Distance Geometry, a new mathematical formulation for the coupler curves of the RCCC
linkage is presented. The relevance of this formulation is not only its simplicity, but the
elegant way in which we can obtain the derivative of any variable with respect to any
other, and the simple way in which intervals of monotonicity can be detected. All these
results are compactly expressed in terms of Gramians and, as a consequence, they have a
direct geometric meaning contrarily to what happens with previous approaches based on
kinematic loop equations.
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1 Introduction

The RCCC linkage is the most general spatial four-bar linkage with mobil-
ity one [1]. This linkage has been proved to be a good testbed in which to
try and evaluate new ideas concerning the analysis of spatial linkages [2].
The spatial coupler curves of the RCCC linkage were studied in [3] using
an analytic approach based on 3×3 orthogonal transformation matrices with
dual number elements. This approach has become the standard formulation
in most subsequent analysis of this linkage [4, 5].

In Fig. 1 appears a CCCC linkage from which an RCCC linkage can be
derived by blocking the sliding motion of any of its cylindrical joints. In
this linkage, the two parameters which describe the kinematics of the joint i;
namely, the angular displacement denoted as θi and the joint offset denoted
as di can be combined into the dual angle θ̂i = θi + εdi. The two parame-
ters describing the geometry of link i (i = 1, . . . , 4), namely, the twist angle
denoted as θi,i+1 and the link length denoted as di,i+1 can be combined into

the dual angle θ̂i,i+1 = θi,i+1+εdi,i+1 where ε stands for the dual unit which
is defined as ε2 = 0, ε 6= 0. Observe that θ (d), with only a subindex, denotes
the angular displacement (joint offset) of the joint defined by the subindex;
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Fig. 1 Notation associated with the joints of a CCCC linkage.

and, with two subindices, denotes the twist angle (link length) between the
two axes defined by the two subindices. This notation does not comply with
the standard, but it simplifies the formulation given below and avoids possi-
ble confusions between standard and modified DH parameters. The axes I1,
I2, and I3, and I4 can be transferred to the dual space by the four points
P1, P2, P3 and P4, respectively, all lying on the dual unit sphere. Therefore,
the position analysis of the CCCC linkage in the Euclidean space is equiva-
lent to solving the position analysis of the corresponding single-dof spherical
four-bar linkage in the dual unit sphere. To this end, it is possible to derive
the loop equation of this spherical four-bar linkage as the product of 3×3 or-
thogonal transformation matrices with dual number elements. By developing
this matrix product, a system of nine nonlinear equations in four unknowns
(θ̂i, i = 1, . . . 4) is obtained [6, 7, 3]. Alternatively, we could also use dual
quaternions in which case we would get four equations. Nevertheless, only
three independent scalar equations are required to solve this position anal-
ysis because a four-bar linkage on the sphere has 1 dof. In this paper we
depart from these standard formulations based on a loop equation by deriv-
Author's
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ing, using Distance Geometry on the sphere [8, 9], a single scalar equation
in two unknowns. The relevance of this equation is not only its simplicity,
but the elegant way in which we can obtain the devivatives of any of the
variables with respect to any other, including the geometric interpretation of
local extrema, in terms of Gramians.

The rest of this paper is organized as follows. Section 2 concisely describes
the new formulation and its basic properties. Section 3 gives the main clues
on how this new formulation can be applied to a particular example. Finally,
Section 4 gives some conclusions and prospects for future research.

2 Deriving a single scalar closure condition

In spherical geometry, the shortest distance between two points, also known
as the geodesic distance, is the length of an arc of a great circle containing
both points. This great circle is the result of intersecting the plane passing
through the origin and the two points with the sphere. Then, the distance
between two points on the unit sphere is d(Pi, Pj) = cos−1〈pi,pj〉, the angle
between the vectors from the origin to the points Pi and Pj which will be
denoted by θij . Here 〈pi,pj〉 is the standard Euclidean inner product.

The triangle inequality between three points on a sphere holds provided
that the distance between any two points is the lowest of the two arcs of
great circle with them as endpoints. Then, if we assume that 0 ≤ θi,j < π,
the mapping between θi,j and cos θi,j becomes one-to-one. Observe that a
link with twist angle θi,j is kinematically equivalent to a link with twist
angle 2π−θi,j . Therefore, in what follows and as a matter of convenience, we
will indistinctly use θij or cos θij when referring to the distance between Pi

and Pj .
Given the location vectors, p1, . . . ,pn, of points P1, . . . , Pn, the Gram

determinant, or Gramian, is the determinant defined as

G(1, . . . , n) =

∣∣∣∣∣∣∣∣∣

〈p1,p1〉 〈p1,p2〉 . . . 〈p1,pn〉
〈p2,p1〉 〈p2,p2〉 . . . 〈p2,pn〉

...
...

. . .
...

〈pn,p1〉 〈pn,p2〉 . . . 〈pn,pn〉

∣∣∣∣∣∣∣∣∣
, (1)

which, in the particular case in which all points lie on the unit sphere, reduces
to

G(1, . . . , n) =

∣∣∣∣∣∣∣∣∣

1 cos θ1,2 . . . cos θ1,n
cos θ1,2 1 . . . cos θ2,n

...
...

. . .
...

cos θ1,n cos θ2,n . . . 1

∣∣∣∣∣∣∣∣∣
. (2)Author's
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Gramians are zero if, and only if, the involved coordinate vectors are lin-
early dependent, and strictly positive otherwise [10, p. 251]. Negative Grami-
ans only arise in those situations in which the given interpoint distances do
not correspond to any configuration of real points. Since we limit our anal-
ysis to a sphere in three dimensions, a Gramian of four points necessarily
vanishes. For the same reason, a Gramian of three points lying on a great
circle also vanishes. Next, we analyze the four-point case in more detail.

If we have four points, say Pi, Pj , Pk and Pl, then

G(i, j, k, l) =

∣∣∣∣∣∣∣∣

1 cos θi,j cos θi,k cos θi,l
cos θi,j 1 cos θj,k cos θj,l
cos θi,k cos θj,k 1 cos θk,l
cos θi,l cos θj,k cos θk,l 1

∣∣∣∣∣∣∣∣
(3)

vanishes if, and only if, the four points lie on the three-dimensional unit
sphere. Then, in what follows, G(i, j, k, l) will be referred to as the closure
condition for Pi, Pj , Pk and Pl.

Using a computer algebra system, it can be verified that (see [11] for
details)

G(i, j, k, l) =
(
G(i, j) cos θk,l −B(i, j, k, l)

)2
−G(i, j, k)G(i, j, l), (4)

where

B(i, j, k, l) =

∣∣∣∣∣∣

1 cos θi,j cos θi,k
cos θi,j 1 cos θj,k
cos θi,l cos θj,l 0

∣∣∣∣∣∣
. (5)

Now, since G(i, j, k, l) = 0, we can easily conclude that

cos θk,l =
B(i, j, k, l) + σk,l

√
G(i, j, l)G(i, j, k)

G(i, j)
, (6)

where

σk,l =





−1, if Pk and Pl lie on the two different hemispheres defined by

the great circle containing Pi and Pj

+1, otherwise

(7)

If G(i, j, k)G(i, j, l) = 0, there is only one solution for θk,l. Clearly, this
only happens when any of the two triangles PiPjPk and PiPjPl degenerate
(i.e., when either Pk or Pl lies on the great circle defined by Pi and Pj).

If we derive (4) with respect to cos θk,l, we conclude, using (6), that

∂G(i, j, k, l)

∂ cos θk,l
= 2G(i, j) σk,l

√
G(i, j, l)G(i, j, k). (8)Author's
 vers
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Fig. 2 Given four points on the unit sphere, Pi, Pj , Pk, and Pl, the distance between,
say Pk and Pl, is determined by all other interpoint distances. In general, two solutions
are possible which corresponds to the cis (left) and trans configuration (right).

Similar expressions are obtained when deriving G(i, j, k, l) with respect to
the cosine of any other angle. Then, since G(i, j, k, l) = 0, using the theorem
of implicit differentiation, we have, for example, that

∂ cos θi,j
∂ cos θk,l

= −
∂G(i, j, k, l)/∂ cos θk,l
∂G(i, j, k, l)/∂ cos θi,j

= −σi,jσk,l

G(i, j)

G(k, l)

√
G(i, j, l)G(i, j, k)

G(i, k, l)G(j, k, l)
.

(9)
It follows from this expression that the variation of θi,j with respect to that
of θk,l is monotone provided that no three points involved in the Gramians
inside the squared root get aligned (they lie on a great circle).

The derivative in (8) is also very helpful to obtain the dual component of
the closure condition G(i, j, k, l) = 0 when extending it to dual angles. Let us

denote this extension as Ĝ(i, j, k, l) = 0. Then, Ĝ(1, 2, 3, 4) = 0, in the dual

variables θ̂i,j = θi,j − εdi,j , for 1 ≤ i ≤ j ≤ 4, can be expressed using the
chain rule as follows:

Ĝ(1, 2, 3, 4) = G(1, 2, 3, 4) + ε
∑

1≤i<j≤4

di,j
∂G(1, 2, 3, 4)

∂ cos θi,j

∂ cos θi,j
∂θi,j

. (10)

This allows us to conclude, using (8), that the dual component of the
closure condition can be expressed as

∑

1≤i<j≤4

σi,jdi,j sin θi,j
√
G({1, 2, 3, 4}\i)G({1, 2, 3, 4}\j) = 0, (11)

an elegant expression for the dual component of Ĝ(1, 2, 3, 4) = 0 of great
compactness when compared with the results obtained using loop equations.Author's
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3 Example

Let us consider the CCCC linkage in Fig. 1 for which we want to obtain the
coupler curve relating θ4 as a function of θ1. This problem corresponds to the
second example in [3]. In this particular case,

θ̂1,2=30◦+ε2cm, θ̂2,3=120◦+ε3cm, θ̂3,4=105◦+ε4cm, θ̂1,4=45◦+ε3.5cm,

and where the input joint offset, d1, is set to 6cm.
If we only consider the real part of the closure condition Ĝ(1, 2, 3, 4) = 0,

i.e. G(1, 2, 3, 4) = 0, we can readily plot θ13 as a function of θ24 using (6).
The result appears in Fig. 3. In this plot, the Cartesian region defined by
[−1, 1]× [−1, 1] can be divided into subregions attending to the signs of the
Gramians resulting from taking all subsets of three points. Only the part
of the curve inside the region where all these Gramians are positive has
physical meaning. The boundaries between all these regions correspond to
configuration where three points get aligned. The curve itself can also be
subdivided into monotonic segments attending to the signs of σ1,3 and σ2,4.
The points separating these segments also correspond to points where three
points get aligned. As a consequence, these points are necessarily located on
the boundary of the feasibility region. In general, we can have up to four
such segments, but in this particular example we just have three because this
mechanism has a configuration in which G(1, 3, 4) = G(1, 2, 3) = 0 which
corresponds to the limiting position reported in [3]. At this position θ1 = π
and the coupler link and the output link are collinear, i.e., θ3 = π (see [3] for
more details). This mechanism has no configurations where σ1,3 = +1 and
σ2,4 = −1, that is, configurations where P1 and P3 are located on the same
hemisphere defined with respect to the great circle containing P2 and P4, and
where P2 and P4 are located on different hemispheres defined with respect
to the great circle containing P1 and P3.

Each point of the obtained curve gives a value for cos θ24 and cos θ13 from
which we can obtain the values of cos θi, i = 1, . . . , 4, using the law of cosines
for suplementary angles. In the particular case of cos θ1 and cos θ4 we have
that:

cos θ1 = (− cos θ2,4 + cos θ1,4 cos θ1,2)/(sin θ1,4 sin θ1,2)

= (− cos θ2,4 + 0.61237)/0.35355 (12)

cos θ4 = (− cos θ1,3 + cos θ3,4 cos θ1,4)/(sin θ3,4 sin θ1,4)

= (− cos θ1,3 − 0.18301)/0.68301 (13)

Now, we can obtain the plot expressing cos θ4 as a function of cos θ1 that ap-
pears in Fig. 4(left). Since (12) and (13) are affine relations, the monotonicity
of the three segments is preserved.Author's
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Fig. 3 Plot of cos θ1,3 as a function of cos θ2,4 (it can also be seen as the root locus of
G(1, 2, 3, 4) = 0). The dots in red correspond to the linkage configurations reported in [3].
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Fig. 4 Left: Curve relating cos θ4 and cos θ1 obtained from the curve in Fig. 3 using (13)
and (12). Right: Coupler curve relating θ1 and θ4. Again, the dots in red correspond to
the linkage configurations reported in [3].

Finally, the coupler curve relating θ4 and θ1 can be obtained by computing
the ± arccos of both coordinates of each point of the curve in Fig. 4(left). This
is a 1-to-4 mapping. Two of these images are not solutions of the problem
because they do not satisfy the original kinematic constraints, i.e. the signs
of θ1,2, θ2,3, θ3,4, and θ1,4. As with many problems solved in a distance space,
Author's
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when mapping the obtained solutions to an Euclidean space, they should be
checked to satisfy some consistency constraints [12].

4 Conclusion

The position analysis of a RCCC linkage in the Euclidean space is equivalent
to solving the position analysis of a spherical four-bar linkage in the dual
unit sphere. If we try to solve this problem using Distance Geometry directly
in the Euclidean space using Cayley-Menger determinants, the formulation
becomes quite involved. In this paper, we have shown how the problem can
be solved using Distance Geometry in the dual unit sphere. This result opens
the possibility of using Cayley-Menger determinants with dual arguments to
compactly formulate other geometric problems. This is a point that certainly
deserves further attention.
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