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Abstract. Inverse kinematics is a very important issue in the field of mechanisms and robotics, which 

is the fundamental problem in kinematical analysis, design and synthesis for both serial mechanisms 

(SMs) and parallel mechanisms (PMs). The objective of inverse kinematics is to formulate computable 

kinematic equation at the given pose of end-effector of a SM or moving platform of a PM and then 

solve all the joint parameters (variables). Solving analytical solution of inverse kinematics is the pre-

requisite for trajectory planning, precise control and manipulation of mechanisms. This paper presents 

a generalized method to analytically do inverse kinematics of PMs using finite screw theory. Firstly, 

the kinematic equation of PM is algebraically formulated through describing finite motions generated 

by the PM, its limbs and joints employing finite screws. Then, the general procedures to analytically 

solve the finite screw based kinematic equation are given. Finally, a PM with three translational and 

one rotational Schoenflies motion is taken as an example to verify the validity of the proposed method. 
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1 Introduction  

Inverse kinematics, which is also called inverse position problem, is aimed at for-

mulating kinematic equation of a mechanism at the given pose and solving all the 

joint parameters (variables). It is a fundamental problem in kinematical analysis, 

design and synthesis for both serial mechanisms (SMs) and parallel mechanisms 

(PMs) [3, 7]. Solving analytical solution of inverse kinematics is the prerequisite 

for trajectory planning, precise control and manipulation of mechanisms. Because 

all the joint parameters of a PM can be obtained through solving the joint parame-

ters in each of its limbs sharing the same moving platform, inverse kinematics of a 
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PM can be decomposed into several inverse kinematics problems of SMs. Accord-

ing to the mathematical tools that are used to formulate kinematic equations, the 

existing methods to deal with inverse kinematics can be classified into two catego-

ries, i.e., vector chain based method and exponential matrix based method. 

In vector chain based method, three-dimensional position vectors are used to 

formulate the kinematic equations through building the mapping between the posi-

tions and orientations of the given pose. In the formulated position equations, all 

joint parameters are independent and decoupled. Hence, the equations can be 

solved by means of elimination. The vector chain based method can be traced 

back to the early research of theoretical kinematics, and detailedly discussed and 

concluded by Wampler [8] and Craig [1]. Based upon this, inverse kinematics of 

SMs constituted by six revolute (R) joints are solved by Raghavan and Roth [5] 

through engine value and vector analysis of several univariate polynomial equa-

tion with high-order. Because lower mobility SM can be regarded as the sub-chain 

of six degree-of-freedom (DoF) SM, and six DoF SM can be regarded as the sub-

chain of SM with higher DoFs, this method can be extended to solve any SM. It 

should be noted that nonlinear equations relating the joint parameters and the giv-

en orientations needed to be solved when the number of DoFs of the SM is more 

than three. This brings huge difficulties to analytical solution of inverse kinemat-

ics. Thus, numerical methods are usually needed when solving higher DoF SMs. 

Using exponential matrix with joint parameter to describe pose transformation 

between adjacent links, the kinematic equation can be obtained by multiplying 

these matrices together. In the formulated kinematic equation, all the joint parame-

ters are in the exponents, the algebraic operations can only be carried out using 

Baker-Campbell-Hausdorff formula or Taylor series expansion. Because there are 

too many terms in the expanded matrix polynomials, the kinematic equations are 

hard to be analytically solved. Thus, solution of inverse kinematics mostly relies 

on numerical methods [2]. For the kinematic equations formulated by exponential 

matrix based method, inverse kinematics can also be solved by geometrical meth-

ods. Based upon Kahan’s research work, Paden [4] decomposed the inverse kine-

matics of SMs into several typical sub-problems through concluding the common 

structure units of SMs. The analytical solution of each sub-problem is given by 

geometrical and algebraic derivations. It should be noted that the Paden-Kahan 

sub-problems do not cover all the possible structure units of SMs. Hence, some 

SMs connot be solved applying these sub-problems. 

From the above analysis, it can be concluded that the existing methods cannot 

obtain analytical solution of inverse kinematics for arbitrary SMs because of the 

mathematical tools used. Both vector chain and exponential matrix have some lim-

itations in describing finite motions and formulating kinematic equations of mech-

anisms. Hence, the clear algebraic mapping between all the joint parameters and 

the given pose has not been built. As the concise and non-redundant description of 

finite motions with analytical composition screw triangle product [6], finite screw 

has the potential to overcome the limitations of vector chain and exponential ma-

trix. As shown in the authors’ previous work [6, 9, 10], the algebraic structures of 
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finite screws were revealed and the derivative mapping between finite and instan-

taneous screws was built, resulting in a general and consistent method to unify 

type synthesis and kinematic analysis under the umbrella of screw theory. In this 

paper, inverse kinematics will be carried out employing finite screws, which leads 

to a systematic and thorough theoretical framework that unifies topological, posi-

tion and orientation (pose), velocity modeling and analysis together. 

Based upon the authors’ previous work, this paper presents a generalized meth-

od to analytically do inverse kinematics of PMs using finite screw theory. The pa-

per is organized as follows. Having a brief review of the state-of-the-art of the ex-

isting methods for inverse kinematics in Section 1, Section 2 presents the new 

method to algebraically formulate kinematic equations of a PM and its limbs em-

ploying finite screws. In Section 3, the general procedures to analytically solve the 

finite screw based kinematic equation are given. A PM with three translational and 

one rotational Schoenflies motion is taken as an example to verify the validity of 

the proposed method in Section 4 before the conclusions are drawn in Section 5. 

2 Finite screw based kinematic equations 

A finite motion of a rigid body from its initial pose to arbitrary pose can be pre-

sented as a rotation about the Chasles’ axis followed by a translation along that ax-

is, which can be described by a finite screw fS  in quasi-vector [6] form as 
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where fs  and fr  denote the unit vector and position vector of the finite motion 

axis,   and t  are the angular and linear displacement about/along that axis. 

A SM constituted by n one-DOF joints (R joints and prismatic (P) joints) is 

shown in Fig. 1. Using finite screws to describe the finite motions generated by R 

and P joints , the finite motions realized by the end-effector can be expressed by 

screw triangle product [6]. Thus, the kinematic equation of a SM at a given pose 

can be formulated as 
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where ,SMfS  denotes the given pose of the SM, the denotations of the symbols in 

Eq. (2) can be referred t o those in Eq. (1). 

 

Fig. 1 Finite motions of a SM 

For a PM composed of l limbs, each limb is a SM sharing the same end-

effector, i.e. the moving platform of the PM. Hence, all the joint parameters can be 

obtained through solving l kinematic equations relating l limbs in form of Eq. (2). 

 , , , , 1 , ,1 ,PMi if i n f i n f i f S S S S , 1,2, ,i l  (3) 

where , ,f i kS  ( 1,2, ,k n ) denotes the finite screw generated by the kth joint in 

the ith limb, ,PMfS  is the given pose of the PM. 

Eq. (3) can be equivalently rewritten using screw triangle product, resulting in 

clear algebraic mappings between the joint parameters ,i k , ,i kt  and the given pose 

,PMfS . In this way, the joint parameters can be solved by algebraic derivations. 

3 Generalized method to solve kinematic equations 

According to Reference [6], the resultant finite screw composited by several finite 

screws has the quasi-vector form of Eq. (1). Thus, the left side of Eq. (3) can al-

ways be rewritten into the following form 
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where ,f is , ,f ir , 
i  and 

it  of the ith limb are functions of the joint parameters 

,i k , ,i kt  of that limb. 

If the pose of the PM is given as 
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the following equations can be derived based upon Eqs. (3)-(5) 

 PMtan tan
2 2

i 
 , , ,PMf i fs s  (6) 
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Eq. (6) is the mapping between the joint parameters relating rotational motions of 

the ith limb and the orientation of the moving platform. Eq. (7) is the mapping be-

tween the joint parameters relating translational motions of the limb and the posi-

tion of the moving platform. When ,PMfS  is given, all joint parameters can be ana-

lytically solved using Eqs. (6) and (7). The detailed steps of inverse kinematics for 

PMs are listed as follows: 

Step 1: Formulate kinematic equations of each limb as Eq. (3) (Eqs. (6) and (7)); 

Step 2: Solve rotational parameters of each limb using Eq. (6); 

Step 3: Solve translation parameters of each limb using Eq. (7). 

4 Examples 

A PM with Schoenflies motion is for example, this PM is composed of four limbs 

in which every two limbs placed oppositely have the same structures, i.e., 

P1P2P3RaRb and P1P2RaRaRc. Given ,PMfS , we solved two limbs P1P2P3RaRb and 

one limb P1P2RaRaRb in this Section. 

Limb P1P2P3RaRb:  

The kinematic equation can be formulated by Eqs. (3), (6) and (7) 
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The two rotational parameters a  and b  can be solved from Eq. (9) as 
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The three translational parameters 
1Pt , 

2Pt  and 
3Pt  can be solved from Eq. (10) as 
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where 
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1
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3E  is a unit matrix of order three, 
bas  is the skew matrix of

bas . 

Limb P1P2RaRaRc: 

The kinematic equation can be formulated 
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The two rotational parameters 
1 2a a   and 

b  can be solved in the similar man-

ner as Eqs. (9) and (11). The three translational parameters 
1a , 

1Pt  and 
2Pt  can be 

solved from the position part of Eq. (13) 
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The solution of Eq. (14) is 
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In this way, all the joint parameters of this PM can be analytically solved. 

5 Conclusions 

This paper presents a generalized and analytical method to solve inverse kinemat-

ics of SMs and PMs using finite screw theory. The main merits of this method are: 

(1) The method can be applied to get analytical solution of inverse kinematics for 

arbitrary SMs and PMs. 

(2) The main advantage of this method is accuracy and the analytical solution can 

be directly used in trajectory planning, precise control of mechanisms. 

(3) United with the authors’ previous work, all topological, position and orienta-

tion (pose), velocity modeling and analysis can be unified into the systematic 

and consistent framework of screw theory. 
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