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Abstract. Inverse kinematics is a very important issue in the field chanisms and robotics, which

is the fundamental problem in kinematical analysis, design s sis #0r both serial mechanisms
(SMs) and parallel mechanisms (PMs). The objective of i

kinematic equation at the given pose of end-effector of a

erse kinematics is to formulate computable
oving platform of a PM and then
solve all the joint parameters (variables). Solving analytical solution of inverse kinematics is the pre-
requisite for trajectory planning, precisg controlfan nipulation of mechanisms. This paper presents
a generalized method to analytically d(xers ematics of PMs using finite screw theory. Firstly,

the kinematic equation of PM is algebrdieally fo ed through describing finite motions generated

by the PM, its limbs and joints em g finite screws. Then, the general procedures to analytically

solve the finite screw based king

jon are given. Finally, a PM with three translational and

one rotational Schoenflies mof en 45 an example to verify the validity of the proposed method.
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1 Intr 10n

rse kinematics, which is also called inverse position problem, is aimed at for-
g kinematic equation of a mechanism at the given pose and solving all the
joint parameters (variables). It is a fundamental problem in kinematical analysis,
esign and synthesis for both serial mechanisms (SMs) and parallel mechanisms
(PMs) [3, 7]. Solving analytical solution of inverse kinematics is the prerequisite
for trajectory planning, precise control and manipulation of mechanisms. Because
all the joint parameters of a PM can be obtained through solving the joint parame-
ters in each of its limbs sharing the same moving platform, inverse kinematics of a
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PM can be decomposed into several inverse kinematics problems of SMs. Accord-
ing to the mathematical tools that are used to formulate kinematic equations, the
existing methods to deal with inverse kinematics can be classified into two catego-
ries, i.e., vector chain based method and exponential matrix based method.

In vector chain based method, three-dimensional position vectors are used to
formulate the kinematic equations through building the mapping between the posi-
tions and orientations of the given pose. In the formulated position equations, all
joint parameters are independent and decoupled. Hence, the equations can b
solved by means of elimination. The vector chain based method can be tr
back to the early research of theoretical kinematics, and detailedly discusgse
concluded by Wampler [8] and Craig [1]. Based upon this, inversg kine
SMs constituted by six revolute (R) joints are solved by Raghavan and

through engine value and vector analysis of several univariate polynamial cqua-
tion with high-order. Because lower mobility SM can be regardgd asghe SWb-chain
of six degree-of-freedom (DoF) SM, and six DoF SM can b, edjas the sub-

chain of SM with higher DoFs, this method can be exte to s any SM. It
should be noted that nonlinear equations relating the jei ers and the giv-
en orientations needed to be solved when the numb of the SM is more
than three. This brings huge difficulties to analy#iga on of inverse kinemat-
ics. Thus, numerical methods are usually needéd when solving higher DoF SMs.
Using exponential matrix with joint parame describe pose transformation
between adjacent links, the kinematic_equation can be obtained by multiplying
these matrices together. In the fgrmulé ematic equation, all the joint parame-
ters are in the exponents, the al@ebra ations can only be carried out using
Baker-Campbell-Hausdorff forfiula or Ta¥lor series expansion. Because there are
too many terms in the expa matrix polynomials, the kinematic equations are
hard to be analytically se
on numerical methods

ity

Igebraic derivations. It should be noted that the Paden-Kahan
s do not cover all the possible structure units of SMs. Hence, some

Fro e above analysis, it can be concluded that the existing methods cannot
ipranalytical solution of inverse kinematics for arbitrary SMs because of the
mathematical tools used. Both vector chain and exponential matrix have some lim-
itations in describing finite motions and formulating kinematic equations of mech-
anisms. Hence, the clear algebraic mapping between all the joint parameters and
the given pose has not been built. As the concise and non-redundant description of
finite motions with analytical composition screw triangle product [6], finite screw
has the potential to overcome the limitations of vector chain and exponential ma-
trix. As shown in the authors’ previous work [6, 9, 10], the algebraic structures of
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finite screws were revealed and the derivative mapping between finite and instan-
taneous screws was built, resulting in a general and consistent method to unify
type synthesis and kinematic analysis under the umbrella of screw theory. In this
paper, inverse kinematics will be carried out employing finite screws, which leads
to a systematic and thorough theoretical framework that unifies topological, posi-
tion and orientation (pose), velocity modeling and analysis together.

Based upon the authors’ previous work, this paper presents a generalized meth-
od to analytically do inverse kinematics of PMs using finite screw theory. The pa
per is organized as follows. Having a brief review of the state-of-the-art of the
isting methods for inverse kinematics in Section 1, Section 2 presents themmew
method to algebraically formulate kinematic equations of a PM alﬂ its 1i
ploying finite screws. In Section 3, the general procedures to analytic
finite screw based kinematic equation are given. A PM with three slagional and
one rotational Schoenflies motion is taken as an example to verity vaiidity of
the proposed method in Section 4 before the conclusions are ction 5.

2 Finite screw based kinematic eqza@

A finite motion of a rigid body from its init to arbitrary pose can be pre-
sented as a rotation about the Chasles’ axis followed By a translation along that ax-
is, which can be described by a finite S, in quasi-vector [6] form as

2l 0
S &(rf xsf}t[sfj M

where S, and r, denot it vector and position vector of the finite motion

axis, € an ular and linear displacement about/along that axis.

A SM d by¥n one-DOF joints (R joints and prismatic (P) joints) is
shown in finite screws to describe the finite motions generated by R
and P jdiats , inite motions realized by the end-effector can be expressed by

screy tri e product [6]. Thus, the kinematic equation of a SM at a given pose

ca ated as
Sf,sm,nD Sf,SM,n—1D -0 Sf,SM,l = Sf,SM 2
0. S,
2tan =k [ Sk J R joint
2\ Tsmk X Ssmk

St suk = 0 , k=12,---,n
tSM'k[ ) P joint

SSM,k
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where S g, denotes the given pose of the SM, the denotations of the symbols in
Eq. (2) can be referred t o those in Eq. (1).

End-effector

Joint n

Joint n-1 St smn
f .SM,n-1
S g

f,SM,2 .
Joint 2 S y

f,SM,1
Joint 1 O

Base X

Fiwi € ions of a SM

For a PM composed of / limbs, eabl?’limb is a SM sharing the same end-
effector, i.e. the moving pla of the PM. Hence, all the joint parameters can be
obtained through solvin ieequations relating / limbs in form of Eq. (2).

f|1 fPM’ =121 3)

where S

the ith li s the given pose of the PM.

be equivalently rewritten using screw triangle product, resulting in

. In this way, the joint parameters can be solved by algebralc derivations.

3 Generalized method to solve kinematic equations

According to Reference [6], the resultant finite screw composited by several finite
screws has the quasi-vector form of Eq. (1). Thus, the left side of Eq. (3) can al-
ways be rewritten into the following form
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o, St 0
S; .08, 008, =2tan=+ ' +1 4)
o o . YAUTRETE St.i

where S;;, I'1;, 6, and t; of the ith limb are functions of the joint parameters
0., t, of that limb.

If the pose of the PM is given as
o S 0
S, oy = 2tan 24 LM et Q
2\ Ii om %St pm St pm P

the following equations can be derived based upon Eqgs. (3)-(5) \

0 6
tanE':tan%, S¢i =S¢ pm & (6)

(7

t;
rfyi ><Sf’i +——5;; =

2tan—-
2

Eq. (6) is the mapping between thg j argmeters relating rotational motions of
the ith limb and the orientation gfthe mowifg platform. Eq. (7) is the mapping be-
tween the joint parameters re g translational motions of the limb and the posi-
tion of the moving platformg\Wh . pw 18 given, all joint parameters can be ana-

lytically solved using E @ d’(7). The detailed steps of inverse kinematics for
PMs are listed as f

Step 1: For tic equations of each limb as Eq. (3) (Eqgs. (6) and (7));
Step 2: Sqlve rameters of each limb using Eq. (6);

Step 3: Sol ans[afidn parameters of each limb using Eq. (7).

‘A PM with Schoenflies motion is for example, this PM is composed of four limbs
in which every two limbs placed oppositely have the same structures, i.e.,
1P2P3RRp and P1P2RR.R.. Given S, , we solved two limbs P1P,P;R,R; and

one limb P1P,R,R.R} in this Section.
Limb P1P2P3R.Rs:
The kinematic equation can be formulated by Egs. (3), (6) and (7)
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S S 0 0 0
2tan| % hownl| % t, [t, t, =S, (®
2\r, xs, 2\rxs, ) "8y ) 718, ) Sy '
tan%saﬂan@sb+tangtan@(saxsb)
a,, 2 2 2 2 Oy
taI’I?: 6 9 =tan7,
1-tan—2tan-2s]s,
2 2
L
tan%sa+tan@sb+tanﬂtan@(saxsb)
__ 2 2 2" 2 _ 9
Sba_ I (Y ( )
ea ab ea Hb
tan-*s, +tan—> s +tan-—*tan—> (s, xs,
2 2 2 2
txs t
Poa + Zba a =Tt om XSt pm @Sf,PM (10)
2tan 2 tan -4
2 2
where
a eb \ a Hb
tan (raxsa)+tan?( S, )+ 2tan?(sa><(rb><sb)+(ra><s,a)><sb)
pba_ ’

The two rofta

where

= tpl

6,
2 2
Sp, +15, S, +15 Sp,

o 6,
vs, than—a'[an?b

(s.xsy)

p eters 6, and 6, can be solved from Eq. (9) as

f,PM (sa Xsb)

T
f,

Stom (3. %,)

T Te oT
Sf,PMSb -3 Sbe,PM

J , 6, = 2arctan£
S, s

T
f,PMS

T T
2~ Sa Sbsf,PM

t' (spl X sz )

stp: 7tP_

3

s (s

51 XSPZ)

J an
Sb

(12)
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E3 §b PM
t= o _73 Fiom XStpm T ) Stom ~ Pea |5
2tan 22 2tan M
2 2

E, is a unit matrix of order three, §, is the skew matrix of’s,, .
Limb P1P:R/R.R.:

The kinematic equation can be formulated
S 0, S o, s 0 0
stan| % hownZ| % po@n| t, t, 13
2(r xs, 2 \r, xs, 2\ xs, s, | s
The two rotational parameters 6, +6, and 6, can be solved i@man-
a

si
ner as Egs. (9) and (11). The three translational parameters nd/t, can be

solved from the position part of Eq. (13)

E, 5

t=| —= a

2tan%
2

I om XSt p St pm — Pea (14)
2 PM

where

>

o
gtan%(sa xs,)

= (exp(9a1§a)— Eg)(raz =1, )+t S, 1, S,

Thegoluti Eq. (14) is
A+JA 1 B? —CZJ

6, =2arctan
' B+C

(t_(exp(galga)_ ES)(raz —ral))T (5P2 x(spl xS, ))

P, T >
s (sF,2 ><(sF,1 XSp, ))
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t. =

P (t_(exp(galga)— )(raz -, ))T (sp1 x(55, XS5, ))

E3
55 (S,F,1 x(sp1 XSp, ))

(15)

where

A= (sa x(raz -, ))T (sPl XSy, ) , B= (raz -, )T (sPl sPZ
C=(t+r, -, )T(s xs;, )
In this way, all the joint parameters of this PM can be analytlcally solv Q
5 Conclusions \

This paper presents a generalized and analytical method
ics of SMs and PMs using finite screw theory. The mai
(1) The method can be applied to get analytical sol

se kinemat-
his method are:
rse kinematics for

Ive i

arbitrary SMs and PMs.
(2) The main advantage of this method is acgiracyjand the analytical solution can
be directly used in trajectory planning, pre ntrol of mechanisms.

(3) United with the authors’ previous work, all topological, position and orienta-
tion (pose), velocity modeding aifd apalysis can be unified into the systematic
and consistent framework of ScreWetheofy.
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