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Abstract. Parallel manipulators present higher load capacity, better rigidity and other advantages
when compared to the serial manipulators. However, parallel manipulators present drawbacks such
as singularities inside their workspace and strongly coupled dynamics. In order to measure these
drawbacks, the condition number of the Jacobian matrix can be used either as a measurement of the
distance between the end effector and singularities or as an isotropy index. In this paper, a study
of the impact of kinematic redundancies on the improvement of a planar manipulator’s isotrop-
icity and on the reduction of singularities is presented. In order to do so, conditioning maps are
exploited for the non-redundant 3RRR and for the kinematically redundant 3PRRR manipulators.
The outcome of this evaluation supports evidences in favor of kinematic redundancies regarding
kinematic characteristics.

Key words: Parallel Kinematic Manipulator (PKM); Kinematic Redundancy; Singularity Avoid-
ance; Conditioning Maps; Isotropy Index.

1 Introduction

Parallel kinematic manipulators (PKMs) can be promising industrial alternatives
to serial manipulators due to their higher dynamic capabilities, higher accuracy and
better payload/self-weight ratio [4]. Nevertheless, they present important drawbacks
regarding real applications [5]. Some of these drawbacks are caused by the presence
of singularities in the parallel manipulator’s workspace. For instance, the accuracy
of a PKM may rapidly decrease near singularities during a task. Kinematic redun-
dancy can be applied to avoid or attenuate this problem. It consists in the introduc-
tion of an active joint in a kinematic chain allowing the self-motion of the manip-
ulator. Due to the inclusion of the redundant actuator, the inverse kinematic model
of kinematically redundant PKMs presents infinite solutions. A proper selection of
a solution may enforce the avoidance of undesirable behaviour. In fact, kinematic
redundancy has been used not only for the singularities’ avoidance but also for the
improvement of manipulator’s kinematic and dynamic characteristics [2, 3, 6].
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Additionally, PKMs present highly coupled dynamics which can become an issue
for designing and implementing real-time control strategies for industrial applica-
tions [7]. The coupling of the mechanism can be measured by an isotropic index
that can be defined by the condition number of the Jacobian matrix as described by
[8]. This index is also exploited as a measurement of the distance between the end
effector and singularities [1].

In this manuscript, a study of the impact of kinematic redundancies on the en-
hancement of the manipulator’s isotropy and on the reduction of singular regions.
This is accomplished by identifying the behaviour of the condition number of the Ja-
cobian matrix of planar parallel kinematic manipulators with kinematic redundancy.
In order to do that, the non-redundant manipulator, the 3RRR, and the kinematically
redundant manipulator, the 3PRRR are investigated. These manipulators, illustrated
in Fig. 1, present three kinematic chains composed of one active revolute joint (R)
and two passive revolute joints (RR). The inclusion of extra active prismatic joints
(P) is responsible for the kinematic redundancies.

The comparison of the behaviour of the condition number of the Jacobian matrix
for predefined tasks could yield misleading interpretations, since this outcome is
task dependent. In this way, conditioning maps are proposed and depicted over the
manipulator’s workspace. In this proposal, the kinematic redundancy is properly
treated.

This paper is organized as follows. The kinematic model of the 3PRRR manip-
ulator is described in Section 2. Section 3 presents the methodology addressing the
conditioning maps. The results are presented and discussed in Section 4. Finally,
conclusions are drawn in Section 5.

(a) (b)

Fig. 1 Illustrations of (a) the non-redundant manipulator 3RRR and (b) the kinematically redun-
dant manipulator 3PRRR.

2 Kinematic Model

In this section, the kinematic model of the 3PRRR manipulator is presented. This
model can be used to represent the non-redundant manipulator 3RRR by imposing
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the input values of the redundant actuators. Figure 2 illustrates a scheme of the
geometry of the 3PRRR. The subscript i = 1, . . . ,3 describes the kinematic chain.
There are revolute joints in Ai, Bi and Ci, where Ai is active and Bi and Ci are passive.
The angles θi and βi represent the orientation of the links AiBi and BiCi, respectively.
The lengths of links AiBi and BiCi are, respectively, l1 and l2. Active prismatic joints
can modify the position of the point Ai. Using this linear actuators the position of
Ai can be modified according to the position δi and the orientation γi (see Fig. 2b).
The distance between the manipulator’s center and the central position of the linear
actuators is represented by a. The Cartesian position of the end effector is (x,y) with
orientation α . The distance of Ci to the center of the end effector is h. Details on this
description can be found in [3].
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Fig. 2 Model parameters of the redundant manipulator 3PRRR: (a) Points and link lengths; (b)
Angles and coordinate system.

2.1 Inverse Kinematics

The inverse kinematic model is used to determine the active joints’ inputs Θ =
[θ1,θ2,θ3,δ1,δ2,δ3]

T that yield a desired end effector’s pose X = [x,y,α]T . Due to
the kinematic redundancies, this task is not simple since the mechanism presents
six actuators while the end effector presents only three DOFs. As a consequence,
this problem, usually denoted as redundancy resolution, presents infinite solutions.
So, considering that the values of the redundant actuators’ inputs δ1,δ2 and δ3 are
known, the inverse kinematics of the manipulator is defined.

First, the variables ρxi and ρyi are introduced as:[
ρxi
ρyi

]
=

[
x
y

]
+h
[

cos(α +λi)
sin(α +λi)

]
−δi

[
cos(γi)
sin(γi)

]
−a
[

cos(λi)
sin(λi)

]
. (1)

Author's
 vers

ion



4 J.V.C. Fontes, H.L. Vieira and M.M. da Silva

The following geometrical constraint can be imposed according to the length of
the links: ∥∥∥∥[ρxi− l1cos(θi)

ρyi− l1sin(θi)

]∥∥∥∥= l2. (2)

Expanding the norm in Eq. 2 and rearranging its result, the following relation can
be obtained:

ei1 + ei2 cos(θi)+ ei3 sin(θi) = 0, (3)

where

ei1 =−2l1ρyi, (4)
ei2 =−2l1ρxi (5)

ei3 = ρ
2
xi +ρ

2
yi + l2

1 − l2
2 = 0. (6)

The tangent half-angle substitution is employed to solve Eq. 3 for θi yielding:

θi = 2tan−1

−ei1±
√

e2
i1 + e2

i2− e2
i3

ei3− ei2

 . (7)

Using Eq. 2 and the result of θi, the angle βi can also be determined by

βi = tan−1
(

ρyi− l1 sin(θi)

ρxi− li cos(θi)

)
. (8)

2.2 Jacobian Matrix

The Jacobian matrix J, which relates Ẋ = [ẋ, ẏ, α̇]T with Θ̇ = [θ̇1, θ̇2, θ̇3, δ̇1, δ̇2, δ̇3]
T ,

needs to be determined as well for the calculation of the manipulators’ conditioning.
This relation is defined as

Ẋ = JΘ̇ (9)

One way to determine it is by taking the time derivative of the constraint relation
described by Eq. 3. This approach yields:

ẋ[l2 cos(βi)]+ ẏ[l2 sin(βi)]+ α̇[l2hsin(βi−λi−α)] = (10)
= θ̇i[l1l2 sin(βi−θi)]+ δ̇i[l2 cos(βi− γi)].

Equation 10 can be rewritten in a matrix form yielding
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AẊ = BΘ̇ . (11)

The matrices A and B can be defined as:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 and (12)

B =

b11 0 0 b14 0 0
0 b22 0 0 b25 0
0 0 b33 0 0 b36

 . (13)

where ai1 = l2 cos(βi), ai2 = l2 sin(βi), ai3 = l2hsin(βi−λi−α), bii = l1l2 sin(βi−
θi) and bii+3 = l2 cos(βi− γi).

3 Conditioning map

The mathematical definition of singularities in PKMs is described by the determi-
nant of the Jacobian matrices A and B [4]. Singular Jacobian matrices indicate sin-
gularities. Nevertheless, regions near to singularities can also be problematic for
real applications and should be avoided. According to [1], the inverse of the condi-
tion number of the matrix A can be used to evaluate the closeness between the end
effector and singularities.

From the kinematic model, one can notice that the matrix A is heterogeneous,
thus its condition number has no physical meaning. This characteristic is due to the
presence of translational and rotational DOFs. Therefore, in order to compensate
and homogenize the matrix A, [1] have proposed a new homogenized matrix Ā
defined as:

Ā =

a11 a12 a13/Lc
a21 a22 a23/Lc
a31 a32 a33/Lc

 , (14)

where Lc =
√

2h is the manipulator’s characteristic length.
The condition number κ of the matrix Ā can be defined as

κ(Ā) =
max σ(Ā)

min σ(Ā)
, (15)

where σ(Ā) is the vector of singular values of the matrix Ā.
By definition, the index κ−1 is bounded, (0≤ κ−1 ≤ 1). And, the following phys-

ical interpretation can be realized: κ−1 = 0 means that the manipulator is on a sin-
gularity and κ−1 = 1 means that it is on an ideal isotropic configuration. In this
way, [1] have demonstrated that the index κ−1 indicates the distance between the
end effector and the singularities.
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Since the index κ−1 is dependent on the manipulators’ configuration, its value is
not constant over the manipulators’ workspace. In this way, the values of the index
κ−1 can be calculated in a mesh over the manipulator’s workspace. Conditioning
maps can be depicted by plotting these values over the workspace.

For non-redundant manipulator, the 3RRR manipulator, a single kinematic con-
figuration is derived by the inverse kinematic model. In this way, a single value of
the index κ−1 is found for each configuration defined by the mesh. For the kinemati-
cally redundant manipulator, the 3PRRR manipulator, infinite configurations can be
derived for a single pose of the end effector. In this work, the conditioning map for
the redundant manipulator is derived by dividing each input of the active prismatic
joints (the redundant actuators, δi) in k possible positions. The best inputs are found
by extensive search for the higher value of the index κ−1. The higher values of the
index κ−1 are depicted yielding the conditioning maps for the redundant case.

4 Results

In this comparison, the parameters for both manipulator are the same. Moreover,
these values have been selected in order to match a real setup built by our research
group [9]. The lengths of each link l1 and l2 are 0.191 m and 0.232 m, respectively.
The limits of the linear actuators are δmin =−0.3 m and δmax = 0.3 m. The lengths
ai and hi are the same for all kinematic chains and are equal to 0.260 m and 0.060
m, respectively.

Figure 3 depicts the conditioning map of the 3RRR manipulator. There are three
unreachable circles inside the workspace due to the difference in the lengths of links
l1 and l2. Moreover, the dark blue areas near to these circles present low condition
numbers. This indicates that these regions are close to singularities. In general, the
conditioning map of the 3RRR shows that the manipulator conditioning is lower
than 0.8 in a large amount of the workspace. Conditioning values higher than 0.8
can only be found at regions near to the center of the workspace.

Fig. 3 Conditioning map of the non-redundant manipulator 3RRR.
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Figure 4 illustrates the conditioning map of the 3PRRR manipulator. One can
notice that there is no unreachable area inside the workspace, which is considerable
larger than the 3RRR’s workspace. Moreover, there is no area that presents a condi-
tioning index lower than 0.2 and there is a wide area with conditioning index higher
than 0.8 in the center of the workspace.

Fig. 4 Conditioning map of the redundant manipulator 3PRRR.

Comparing Figs. 3 and 4, one can notice that the region with index values higher
than 0.8 ( yellow area) presents the same size of the 3RRR workspace. This suggests
that kinematic redundancy promotes the improvement of the manipulator’s condi-
tioning, since the 3PRRR manipulator generally presents higher conditioning values
than the 3RRR manipulator.

Although the redundant manipulator has shown a better conditioning map, these
aforementioned values can only be achieved in specific inputs of the active prismatic
joints (the redundant actuators 1, 2 and 3). These optimal inputs are depicted in
the workspace in Figs. 5(a), 5(b) and 5(c). One can observe that there are some
important discontinuities regions in these maps leading to unfeasible trajectories for
the redundant actuators. Indeed, this fact shows that the proposal of a strategy to
design smooth optimal position maps can be helpful for the design of redundant
manipulators. These maps can be useful for deriving redundancy resolution scheme
for real applications.

(a) (b) (c)

Fig. 5 Optimal inputs for the redundant actuators (a) δ1, (b) δ1 and (c) δ1.
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5 Conclusions

In general, PKMs present high coupled dynamics and singularities in the workspace.
In order to avoid these drawbacks, kinematic redundancy can be applied as stated
in the literature. In this manuscript, the impact of kinematic redundancy on the
conditioning of PKMs was addressed. In order to do that, two manipulators were
compared: the non-redundant 3RRR and the redundant 3PRRR manipulators. This
comparison was carried out by contrasting the conditioning maps of both manipu-
lators. These maps were depicted by plotting the inverse of the condition number of
the homogenized Jacobian matrix in the manipulator’s workspace.

The results demonstrated a considerable increase in the area where the condi-
tioning index is larger than 0.8 when kinematic redundancies are considered. This
indicates that kinematic redundancies can be an alternative for improving the per-
formance of PKMs. Finally, the authors believe that these conditioning maps could
be applied to the development of a redundancy resolution scheme improving the
conditioning of redundant manipulators for real applications.
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