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Abstract. ACTIVE ANKLE is a novel 3 DoF parallel mechanism whichR@rks in ost spheri-
e tion, low link diver-

sity and robust construction. Determining all the solutions to thefd

important and challenging step in kinematic analysis of any pe

odes where this mechanism behaves as an
contribution of the paper.
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1 Introd

A novel, al -sph&#iCal parallel manipulator (ASPM) ACTIVE ANKLE (Fig. 1)
with similar mechanisms like AGILE EYE has recently been

ct center (of rotation) in case of spherical parallel manipulators (SPM)
to almost spherical motions that includes a shift of the end effector about
a tolefated, very small domain. Due to the presence of a closed loop in each leg, the
chanism offers high stiffness and orientation accuracy. The mechanism features a
ow link diversity and its simple, robust and modular design makes it highly suitable
for many applications. While the primary application of the ACTIVE ANKLE is an
active ankle joint in an exoskeleton or a humanoid, it could also be integrated as a
submechanism into a regional manipulator for obtaining precise six DOF motions
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if the constrained translations of the ASPM are compensated by the previous joints
of the overall device.

Solving the direct kinematics of any newly invented parallel manipulator is usu-
ally challenging. Since the last few decades, increasingly sophisticated computa-
tional tools are being developed for numerical algebraic geometry that can assist
derivation and solution of polynomial systems which describe the mechanism ge-
ometry [2, 1]. This paper aims to provide the solution to direct kinematics prob-
lem (DKP) of the ACTIVE ANKLE mechanism using powerful tools from compu-
tational algebraic geometry. The motivation stems from the desire to identify those
DKP solutions, i.e. the assembly modes, that have the lowest deviation from a per-
fect spherical motion. In particular, we are interested in exploring the upper boun
on the number of solutions of its DKP and identifying assembly modes wherg

of practical interest.
The paper is organized as follows: Section 2 presents the m
ture and constraint equations. Section 3 presents the solution

exploring the number of real solutions by discretizing t
tion 4 presents the torsional motion analysis of this jfec
of the singularities. Section 5 concludes the papep by Summadrizing new insights into
the mechanism’s geometry.

ANKLE prototype

Fig. 2: ASPM architecture

Architecture and Constraint Equations

The mechanism ACTIVE ANKLE shown in Figure 2 comprises of three legs each
of which consist of a revolute joint and a spatial quadrilateral linkage with four
spherical joints. The motors actuate the three revolute joints whose axes are aligned
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along the vectors 1, j and k. The fixed global coordinate frame G is chosen such that
it is coincident with moving end effector coordinate frame £ when the mechanism
is in its zero configuration. The position vectors of the spherical joint centers are ¢;
(on the crank) and e; (on the end-effector), i = 1,2,...,6. The vector e = (ey, ey, e;)"
indicates the position of the moving coordinate frame E. The connecting rod length,
1, crank radius, r and half-length of end effector segment d (= ||e —¢;||) constitute
the design parameters. For input joint variables gy, g, and g;, the homogeneous
coordinates of ¢; in the ground frame G and e; in the end-effector frame E are written

as follows:
1,0, rcos(qy), 1 + rsin(gy)]" el =1[1,0,d,0]"
1,0, —rcos(qy),l — rsin(q,)]T ef =[1,0,—4,0" :

o§ =
C§
¢§ = [1,1+rsin(gy),0,rcos(qy)]" ek =1[1,0,0,d]

=1, [

[ [

[ [

¢ = [1,1—rsin(gy),0, —rcos(gy)]" et =11,0,0, —d]x
¢ =[1,rcos(q.), +rsin(q;),0]T es =[1,d,0

¢ =[1,—rcos(q;),l — rsin(q;),0]" [ %

To express e; in the global frame, a coordinate trans @%ﬂed as follows:

2

where, M is the transformation matrix algebrai scribed by unit quaternions
and position coordinates. With thls ch01ce we obtain a formulation in terms of 7
parameters which further eases t sis computation.

1 0
ex xo2+x12—x22 — )&XQ)Q +2x1x 2x0x2 +2x1x3
M= ey 2x0x3 + @ — X1 erz *xg, —2x0x1 +2x3%2 )
2

e; 2xox1 +2x3%0  x02—x12 —x22 + x32

where, ey, epresent the position of the end effector center in the global
frame. The etetd’x; (i = 0,...,3) are the orientation quaternions satisfying:

g1 i=x0" +x7 + 0 +x32 - 1=0 C))

he dist between ¢; and e; is fixed and equal to rod length [ (see Fig. 2). Thus,
t up six constraint equations for this mechanism:

lei—cil> =01 i=1,..6 5)

The six constraint equations after simplifications along with orientation quaternion
normalization equation (g; = 0) form an ideal J = (g;,£2,43,84,85,86,87), Where:
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g2 1= (—4e.r +4lr)sing, — 4rcosgyre, — 8exd(xpx3 — x1X72)

+deyd(xf —x3 +x3 —x3) + 8e.d (xox1 +x2x3) — 8dl(x0x1 +x2x3) =0 (6)
g3 := (—4eyr+4ir)sin(q;) —4rcos(q;)ex — 8e.d(xox2 — x1x3)

+ded (3G +x7 —x3 —x3) + 8eyd (xox3 +x1x2) — 8dl (xox3 +x1%2) =0 (7)
g4 1= (—4e,r+4lr)sin(gy) —4rcos(qy)e; — 8eyd(xox| —x2x3)

+4de.d(x3 —x3 — x5 +x3) 4 8exd (xox2 + x1x3) — 8dl(xx2 —x1x3) =0 (8)

g5 := (—8drxox; — 8drxax3)sin(gy) + 2¢2 + 2e§ +2¢2 —de ] +2d* +2r°

+ (—4drx} + 4drx} — 4drx + 4drxd) cos(q,) = 0 ©

g6 = (—8drxox3 — 8drxixy)sin(q;) + 22 + 2e§ +2¢2 —deyl +2d* +2r° 0
+ (—4drx} — 4drx? + 4drx3 + 4drx3) cos(g.) =0 Y @

g7 := (—8drxoxs — 8drx1x3) sin(gy) +2¢2 + 2@5 + 26? —ded +2d4°

+ (—4drx + 4drx} +4drxd — 4drxd) cos(gy) = 0

3 Solving Direct Kinematics &

The sine and cosine in Eq. (6) to (11) are replaged with the tangent half-angle ex-
2 A
pressions: sin(g;) = —4;  cos(gi) = l tfz wheres tan(4), i = x,y,z. To this

2

1+17 1+
end, 1y, and #; are the inputs and xo, 3#>,x3,€x,ey, and e, are the outputs to be
solved for in the seven equations\: [ 7. The design parameters are substi-

tutedas /= 10cm, d = r = 3.5 cn.

3.1 Rational Univari e ntation of DKP Solution

o

A Grobner b (21,82,83,84,85,86,87) is calculated over the field
K[xo,x1,x2,%3, SNA as possible to compute the Grobner basis only after
substitutingyceptaiigalues’to the inputs ¢,,qy and g, and to the design parameters.
For the le& rdering xo <jex {€j,x;} and x; <jer {€j,x0} (i =1,2,3;j =
X,¥,2), th@univ polynomial in xg and x; turned out to be of degree 28 and 75,
i ich should be halved to find unique solutions due to Eq. (4). For
,1,2,3; j = x,y,2), the polynomial in e; was of degree 40. Hence, a
e maximum number of solutions can be found as max{28/2,75/2,40}.
ACTIVE ANKLE can have a maximum of 40 direct kinematic solutions.

.2 Finding Real Solutions

Fort, =1, =1, = tan(%), the RootFinding[Isolate] function of Maple is used
to find out all the real solutions for the set of constraint equations. The algorithm
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No. ey (cm) ey (cm) e; (cm) ay ay a, 0 (deg)
1 1.69 1.69 1.69 -0.57 -0.57  -0.57 159.1°
2 4.93 4.93 4.93 -0.57 -0.57  -0.57 148.7°
3 0.06 0.06 0.06 -0.57  -0.57  -0.57 44.3°

4 6.6 6.6 6.6 -0.57  -0.57  -0.57 23.6°

5 0.69 2.12 2.59 -0.28  0.12 -094  139.4°
6 2.12 2.59 0.69 012 -094 -028 1394°
7 2.6 0.69 2.12 0.94 028  -0.12  1394°
8 1.82 347 3.78 -0.16 032 -093 157°

9 3.78 1.82 3.47 0.93 0.16 -0.32 157°

10 3.47 3.78 1.82 0.32 -0.93 -0.16 157°

11 0.63 0.89 1.43 -0.57 0.22 -0.78 107.3°
12 0.89 1.43 0.63 0.22 -0.78  -0.57 107.3°
13 1.43 0.63 0.89 0.78 057  -022  107.3°
14 5.16 5.88 5.37 0.52 0.06  -0.84 86.1°

15 5.88 5.37 5.16 -0.06 084 -0.52 86.1°

16 5.37 5.16 5.88 084 -0.52  -0.06 86.1°

9
Table 1: Overview of 16 solutions for the DKP with g, = g, = g, = 30"

behind this function finds out the rational univariate repre tatio%%he set of
polynomials and isolates the real roots of these univarj omomials based on
Descartes’ rule of sign and the bisection strategy in a u fram€work [4].

A total of 32 direct kinematic solutions are obtai f qy = q; = 30°. Due
to Eq. (4), this number is to be halved to discard r&peated roots. Thus, there are
16 unique assembly modes for the given input. ch assembly mode, the end

effector position (ey,ey,e;) and the axis-angle representation (ay,ay,a;,0) are ex-
== 6 =2cos !(xp).

S, 2
pressed as follows: ax—\/q, ay , az—m,

The configuration of these assemblysmodes islisted in Table 1.
Among them, No. 3 and 4 ar wn in F#gures 3 and 4. The points corresponding

to the position vector ¢; can m n the circumference of those circles drawn. The
points e; form a spatial cre he er of which represents the end effector point
(shown as black sphere). | show the assembly modes where e, = e, = ¢, and

triplets with gle 6 and permuted values of (ey, ey, e;) and (ax, ay, az).
Four such i obsérved in solutions 5 to 7, 8 to 10, 11 to 13 and 14 to 16
in Table 1.
o record the percentage of number of real solutions to DKP by
d g, from —180° to 180° in finite increments [3]. For convenience,

own in Table 2. It may be noted that the number of real solutions for
guration can only be an even number due to an even upper bound on the
total number of solutions.
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Fig. 3: Assembly Mode 3 (refer Table 1) Fig. 4: Assembly Mode 4 (ref
Real solutions 0 2 4 6
Complex solutions 40 38 36 34 32

Number of poses 204 282 237 222 287 1331
Fraction of poses 15.33 21.19 17.80 16.68 21.56 ‘ 0. 30 100%
Table 2: Overview of the solvability of the DKP for ¢ = 4g.,d\,q:) with discretization S =

[—180°,180°] in 11 steps (|S| = 11 and |S?| = 1331).

4 Torsional Motion Anal)&{ %

The torsional motion of this ipulator is of practical interest because it corre-
sponds to the adduction-ah vement when employed as an ankle joint.
The torsional motion caf araCterized by substituting e, = ey, = e, = ¢ and
Ly =t, =1; = {in sev gt equations. The Grobner basis for the ideal J, now
defined over 1d K]xo,x1,x2,x3, €], is calculated with pure lexicographic

order e <;opX3 X1 <yex X0 using Maple software. This yields a Grobner
basis consis of lynomials, out of which the first one is an input () — output
(e) agnosgic de 10n of the mechanism

1© 4+ 54r* 4361 +9)e* 4 (— 134715 — 44117 — 43591° — 10291
— 7351 — 40651> — 1471 — 1200)e> + (7425118 + 1470017

42899¢° 4-442961° + 1392071* + 540961 49870112 + 24500z +47350) >
+ (—1710100¢% + 98000077 + 2205007 + 196007 + 1239700¢* — 196007
+739900¢> — 980000f — 490000)e + 12005000¢% — 240100007 — 12005000¢5

+ 480200002 — 12005000¢* — 240100007 + 12005000¢ = 0
(12)
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It shows that a maximum of four assembly modes and a maximum of eight working
modes (solutions to the inverse kinematics problem) are possible on the subvariety
defined by e, = e, = ¢;. The implicit plot of Eq. (12) after substituting ¢ = tan(g/2)
is shown in Figure 5 fore =0, ...,7cm and ¢ = g, = g, = g, = —180°,...,180°. For a
value of g = g = gy = g, = 30°, four values of e observed in this figure match with
the values noted in Table 1. From Figure 5, one could also note that the assembly
modes shown in Figures 3 and 4 were actually the almost-spherical assembly modes
for this mechanism because in these assembly modes the change in end effector’s
position is minimal.
The second equation of Grobner’s basis in e, ¢ and xg is found out to be:

Gy := (9t* + 1812 +9) €* + (—6001* — 2941 — 906> — 600) e
+(98007* —9800) xo? +49001* — 147001 +9800 = Og
Eliminating e from Eq. (12) and (13) and substituting ¢ = tan( d Xg =

cos(6/2) results in an implicit equation in terms of the axis angl rogefiting
implicit

terminant of this Jacobian vanishes, the mechanism reaches a singu-
nsidering the Grobner basis equations and det(J) = 0, other variables are
limintated to obtain the Eq. (14) only in terms of 7, =1, =1, =t = tan(q/2).
det(J) = (t —1)(t 4+ 1)(* +1)(26017'2 — 408! — 55370110 4 54732¢°
+240101¢% — 491700¢7 + 7714641° — 925624 +751804¢* (14)
— 4972001 +259600¢> — 80000z + 10000) = 0
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Solving for ¢ and hence g results in six unique solutions which are noticeable as
cusps in Figures 5 and 6. For instance, g = 90° is one of the singularities when e
reaches a value of 6.6 cm. Since, other values of e are indeed possible for an input
angle of 90°, it is important to mention the magnitude of the pair {e,q} or {0,q}
while representing these singularities.

5 Conclusion

This paper presents some global insights into the geometry of the ACTIVE ANK
mechanism through its direct kinematics analysis using tools from computatignal

once the actuator angles are fixed in the three legs, ACTIVE ANKLE a
special instance of 6 — 6 STEWART platform. In practice, a maxi f 1 1 so-

lutions of the direct kinematics problem were found. In additi ItS of the

torsional motion analysis which is of practical interest is presésited a me singu-
larities of the mechanism are highlighted. Moreover, the asge des where the
mechanism behaves as an almost-spherical device are i @
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