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Abstract. The workspace is an important property in the design of every cable-driven parallel
robot. As the workspace is a complicated geometric object, it is difficult to describe changes in
shape and size of the workspace when varying the design parameters of the robot. In this pa-
per, we present an efficient method calleddifferential workspace hull to describe and compute
the workspace properties. The method is based on a triangulation of the surface of the robot’s
workspace. Furthermore, we establish an algorithm that allows to compute the influence of small
changes in the design parameters on the workspace shape. A numerical example underlines the
computational efficiency and accuracy of the presented method.
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1 Introduction

The workspaceW of a robot is the set of all poses that may be generated by this
robot. For analysis and application planning, the workspace is one of its main char-
acteristics. As the general workspace is a six dimensional volumetric object, its
characterization is difficult. Merlet [5] introduces a couple of concepts to formu-
late meaningful descriptions such as theconstant orientation workspace WCO or the
total orientation workspace WTO. These workspaces are three-dimensional subsets
of the general workspace and can be represented as geometric objects e.g. in CAD
software and stored using conventional file formats.

The determination of the workspace for cable-driven parallel robots attracted
some attention. The key workspace criterion for a cable robot is its ability to con-
trol the mobile platform with positive tension in the cables which is calledwrench-
feasibility [13, 3] and to exert wrenches with the end-effector [1]. Other restrictions
include the consideration of limited capabilities of the actuators in terms of veloc-
ities and accelerations as well as the avoidance of cable-cable collisions [7] and
singularities.

Different methods were proposed to compute the workspace of cable robots. In-
terval analysis allows to make volumetric computation of the workspace. Bruck-
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mann [2] developed an interval test for wrench-feasibility allowing for a guaranteed
and continuous workspace computation. Gouttefarde [4] uses interval analysis to
determine the wrench-feasible workspace. The interval algorithms are rigorous in
numerical evaluation but unsensitive to small changes in its input parameters.

As a way of pragmatic representation of the workspace, one can consider only the
surface or boundary ofWCO andWTO. Thus, its geometric representation is a surface
in space and a convenient representation is triangulation [8]. An analytical formula
for the determination of the boundary of the workspace is presented by Verhoeven
[12] and it is found to be a system of univariate polynomial inequations. Unfortu-
nately, the general expression is so complex that it seems out of reach to deal with
these equations even when using advanced computer algebra systems. However, it
provides insight into the structure of the wrench-closure workspace boundary that
consists of pieces of polynomial surfaces with degreen wheren is the degree-of-
freedom of the robot. Recently, this structure is exploited in a symbolic-numeric
scheme to identify its components [11] and Merlet presented a similar approach for
the wrench-feasible workspace of suspended robots [6]. Both results motivate this
work to employ an approximation through triangles.

2 Numeric determination of the workspace boundary

In this paper, we recall a method to compute the boundary of the workspace based
on triangulation [8]. It is assumed that a compact region of the workspace is sought
where disconnected other regions are neglected. This assumption is justified for the
design of cable robots where one usually seeks robots with a compact and connected
workspace. The computation of the workspace boundary aims at speed and preci-
sion rather than rigorous results or insight into the mathematical structure of the
workspace.

In the following, we assume that a quality index is used in terms of a func-
tion g(r ,R). The functiong yields a positive value if the pose described by the
position vectorr and the orientation matrixR of the mobile platform belongs to
the workspace. For cable robots, such functions can be implemented by testing if
the pose iswrench-feasible e.g. by computing a force distribution [10, 9]. If the
workspace test yields a Boolean result, true is associated with a value of 1 and false
is interpreted as−1.

The workspace for a given orientation of the cable robot is represented by a trian-
gulation of its boundary. The idea for the determination of the workspace is to start
with a unity sphere around the estimated centerm and to successively extend this
sphere in radial direction. Clearly, this assumption may lead to an underestimation
of the workspace and the estimation depends on the chosen value ofm. The sur-
face of the sphere is approximated by triangles which are created fromnS iterative
subdivisions of the faces of an octahedron [8].

By making iterative subdivisions from the triangular faces of this octahedron,
two sets are derived. Firstly, the set of the verticesV = {v1, . . . ,vnV} of the tri-
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Fig. 1 a) Unit octahedron b) subdivision step for triangles

angular mesh, and the set of trianglesL = {F1, . . . ,FnT} with triples of vertices
indicating which triples form a triangle of the mesh. Each triangle has the form
Fi = (v3i+1,v3i+2,v3i+3). Thus, we have a setL containingnT = 22nS+3 triangles.

In the second step, the vertices of the triangles are projected onto the boundary
of the workspace. Starting from the estimated centerm of the workspace, the line

Li : v(h)i = m+λivi λi ∈ [0. . .rmax] (1)

is searched for the boundary of the workspace, which is defined by a given maxi-
mum search rangermax. For each positionr generated by the iterations of the line
search, we can compute an arbitrary workspace criterion such as wrench-closure,
wrench-feasibility, reachability, intersection, or feasible deflection using the func-
tion g(r ,R). The numerical results presented in this contribution are computed
with a regula falsi method as it is simple and efficient for Boolean criteria. If the
workspace criterion evaluates to a continuous function, methods such as Newton
iteration can speed up the computation of the roots of the function. If multiple roots
are found, the smallestλi is a conservative value for the boundary. Also rigorous
search methods such as interval analysis can be used to find the first root of the
workspace criterion. Furthermore, sampling or interval evaluation of a set of orien-
tationsR ⊂ SO3 allows to generalize the method to compute the total orientation
workspace (see Sec. 2.1).

Finally, one ends up with the vertexv(h)i = m+λivi approximating the hull of the
workspace with an accuracyεL. The corresponding triangles are rendered into a new
setL (h). Such data can be easily stored in a file such as stereo-lithography data file
format (STL) or virtual reality modeling language (VRML) according to ISO 14772
which can be loaded and visualized with most CAD tools.

The rational behind this generation of the triangular grid is to separate the struc-
ture of the grid from the actual geometry. Having generated the directionsvi for the
line search, one can store the direction and the lengthλi of these vertices in sepa-
rated data structure. The direction vectorsvi can be pre-computed as a grid of a given
resolution (i.e. iteration depthnS). Thus, if the robot undergoes small changes in its
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geometry, one can re-compute the length of its verticesλi and perform a one-to-one
comparison to the values of the original robot.

2.1 Boundary computation for different types of workspace

Having defined the data model and search strategy, one can compute the different
types of the workspace. The strategy described above is straightforward to use for
computing the constant orientation workspaceWCO simply by setting one specific
orientationR for the platform. If one is interested in the maximum workspaceWmax,
one has to modify the evaluation of the functiong(r ,R). A position is said to belong
to the maximum workspaceWmax, if any one orientation in a setR = SE3 belongs
to the workspace. Thus, in the performance criterion, the functiong(r ,R) tests a
discrete grid or an interval range of orientations to be checked after the other, until
an orientation is found that belongs to the workspace or until all are found to be
invalid. In this case, theg(r) is treated to be valid. This can be understood as a
Boolean disjunction (logical: or) between the evaluation of allg(r ,R),R ∈ SE3. If
no orientation was found to be valid, then the pose and thusg(r) is invalid.

Computing valid positions for the total orientation workspaceWTO is done re-
spectively but instead of searching for at least one entry in a subsetR ⊂ SO3 where
the workspace test is valid, one cancels the test if one element fails. In this case,
g(r) evaluates to invalid for that position. In contrast, successfully completing the
full list R evaluates to valid. This is equivalent to the Boolean conjunction (logical:
and) of all single testsg(r ,R),R ∈ R.

2.2 Computing properties of the workspace from the boundary

The triangulated boundary allows for geometric characterizations of the workspace.
It is straightforward to calculate the surfaceS(W ), the volumeV (W ), and the center
of gravityc(W ) of the workspace from the vertices as follows

S(W ) =
1
2

L

∑ ||(vA − vB)× (vA − vC)||2 (2)

V (W ) =
1
6

L

∑((vA −m)× (vB −m)) . (vC−m) (3)

c(W ) =
1

4V(W )

L

∑(vA + vB + vC +m) . (4)

For the volume, one can find a convenient shortcut if one substitutesvi −m = λiui

in the parametric form with the directionui and its length from the line searchλi.
Then, the equation for the volume becomesAuthor's
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V (W ) =
1
6

L

∑λAλBλC(uA ×uB) . uC , (5)

where the scalar value of the product(uA × uB) . uC is equal for all triangles and
depends only on the number of subdivisionsnS done. This simplification holds true
if a regular solid such as the octahedron is used to generate the grid. Thus, one finds
the simple form

V (W ) =
(uA ×uB) . uC

6

L

∑λAλBλC , (6)

with the constant factorV (nS)
i = (uA ×uB) . uC.

The accurate determination of these numbers is useful for designing of cable
robots, especially if one wants to take derivatives of these indices. For computing
derivatives (see Sec. 2.3), one can seldom compute the expressions in closed-form.
If one has to rely on numerical approximation through finite differences, the com-
putation for neighboring values should be as accurate as possible. Therefore, one
has to balance the accuracy used in the line search with the step width of the finite
difference such that the results are meaningful.

2.3 Differential hull

When analyzing the workspace of a cable robot, an interesting aspect is how the
workspace depends on the geometrical and technical parameters or more generally
speaking how it depends on the assumptions made and the algorithm settings. In
general, the computed workspace will be changed if the parameters are differentially
altered. Therefore, doing a sensitivity analysis on the parameters influencing the re-
sult of the workspace computation is revealing and can be done efficiently based on
the workspace hull model proposed above. Mathematically speaking, one may ask
for the derivations of the workspace caused by infinite changes of the describing pa-
rameters such as the positions of the winchesai, the geometry of the platformbi or
the feasible forces in the cablesfmin, fmax (see also Tab. 1). One may also ask for the
sensitivity of the constant orientation workspaceWCO for changes in the orientation
R0. Since the workspace is a continuous set, the changes in shape and size mainly
happen on its boundary. Here, the possibility is neglected that the parameter change
generates a hole in the workspace which would change the workspace’s topological
structures. Therefore, the change in the parameters will only influence the hull of the
workspace. As we have already seen when computing the workspace, it is difficult
to find a closed-form solution of the workspace, hence, for computation we cannot
compute the derivations symbolically. Clearly, numerical approximation using finite
differences is a possible way. If we compute the workspace using discretization or
interval techniques, the solution is insensitive in terms of small changes in the pa-
rameters unless one uses very small thresholds for the discretization. This problem
applies both for simple discretization as well as for interval analysis. In contrast, the
approximation of the workspace boundary through the hull algorithm separates the
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Table 1 Overview of the parameters to be studied with the differential hull.

Geometry Technology Algorithm setting
proximal anchor pointsai

distal anchor pointsbi

pulley radiusrR

cable force limitsfmin, fmax

cable length limitslmin, lmax

applied wrenchwP

maximum cable velocitẏlmax

maximum cable acceleration̈lmax

settings of the force distri-
bution algorithm (e.g. max.
iterations)
platform orientation R
(for constant orientation
workspace)

granularity of the used grid from the accuracy in the computation. Once the number
of triangles is chosen, the points on the hull can be efficiently computed with high
accuracy yielding sensitivity to parameter changes.

If we now consider small changes in the geometry of the robot, we can accurately
track the change in the workspace boundary with moderate computational burdens.
To better understand the approach, it is important to note that the steps for deter-
mining the search directionsvi for the hull determination can be completed before
computing the values forλi for each vertex. Therefore, one changes the robot model
by an increment∆ p and compute the resulting value forλ ′

i . A suitable approxima-
tion is

δP ≈
λ ′

i −λi

∆ p
. (7)

The concept of the differential workspace can be extended to compute the influ-
ence of the parameters on the shape of the workspace, i.e. to compute the derivatives
of the vertices of the workspace or on the derive of the properties surfaceS(W ), vol-
umeV (W ), center of gravityc(W ) of the workspace, i.e. through finite differences,
one computes the derivation or sensitivity

∂S(W )

∂ p
, (8)

wherep is any numerical parameter of the geometry of the robot, the robot’s tech-
nical parameters, or an algorithm parameter. An overview of parameters applicable
for the sensitivity analysis is given in Tab. 1.

3 Results

In this section, an example of the differential hull approach is presented. The case
study is based on the IPAnema 1 robot and the differential hull is computed for
the partial derivations of the workspace hull for changes in thex-component of the
first proximal anchor pointa1. Using the differential hull, the change in the shape
and size of the workspace is determined. Therefore, the algorithm computes a finite
difference approximation for the differentialAuthor's
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Fig. 2 Differential hull of the constant orientation workspaceWCO of the IPAnema 1 robot com-
puted with closed-form method for a finite difference in thex-component of the first proximal
anchor pointaiX . The magnitude of the differences is amplified to make the effect of the change
visible. a) The plot shows the hull with the normal lines indicating magnitude and sign of the finite
difference. b) The same analysis but with an invisible hull.

δa1X
=

∂W (a1X)

∂a1X

, (9)

where the differences in the vertexvi are actually expressed as differences dλi in the
length of vertexvi. The results are visualized in Fig. 2. Red lines in the diagrams
indicate regions with positive values of the derivatives dvi and thus a growth in
the workspace. In contrast, blue lines represent negative derivatives which correlate
with a local decrease in workspace volume. In Fig. 2b, the same results are shown in
order to highlight the region with negative derivatives that are occluded by the hull
in the left plot since the negative derivatives are pointing inwards from the surface
of the workspace. To compute the hull, the threshold for the line search isε = 10−6

and the finite difference ina1X was∆a1X = 10−3. The absolute values of the finite
differences range between -0.001418 and 0.001277 which indicates at maximum
a one-to-one relation between the changes in the geometry and the changes in the
workspace.

The computation of the differential hull is very fast; the determination of the case
study took around 30 ms on a Core i5-3320M with 2.6 GHz. Therefore, all partial
derivatives of the workspace volume, surface, and bounding box can be determined
in less than one second making the evaluation of these differences an interesting tool
for the design of cable robots.

4 Conclusions

In this paper, we proposed a scheme to compute triangulations of the constant ori-
entation workspace as well as of the total orientation workspace for cable-drivenAuthor's
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parallel robots. The presented form for this triangulation allows to determine prop-
erties such as volume and surface both in a fast and accurate way. As changes in
length of the vertices are sensitive to small changes in the geometry of the robots, it
is proposed to numerically estimate the derivatives of the workspace geometry with
respect to changes in the geometry parameters. This presents a useful tool in the de-
sign procedure of cable robots as one can establish relations between geometry and
robot properties to perform targeted manipulation of the geometry, e.g. to determine
geometric parameters that lead to a local growth of the workspace.
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