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Abstract. A Non Uniform Rational B-Spline (NURBS) is used for synthesizing the motion curve
of cam mechanisms because it is flexible and satisfies arbitrary boundary conditions from the
working requirement of machinery systems. For using NURBS curve as motion curves of cam
mechanisms, selecting the knot vector is very important. This work presents the effect of the knot
vector on the displacement, velocity, acceleration, and jerk curves. The linear system of equations
for solving the cam motion is also presented. A general computation of the knot vector of NURBS
for synthesizing the motion curve is presented. Several examples illustrate this research.
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1 Introduction

The synthesis of motion curves for cam mechanisms depends on working require-
ments and application situations of machinery systems. The boundary conditions
of the displacement function are not only displacement constraints but also the ve-
locity, acceleration, and jerk constraints. Frequently, designers must refine the dis-
placement functions, where their derivatives can reduce the maximum values of
acceleration and jerk.

There are several standard functions such as harmonic, cycloidal, trapezoidal,
and polynomial [1-3]. The disadvantage of these functions is limited by a number of
boundary conditions. For motion curves, polynomial functions are commonly used
in cam design. However, the displacement curves can be oscillating with high order
of polynomial when the number of boundary conditions becomes large. Therefore,
acceleration and jerk curves can occur the peak values.

In several recent decades, spline functions, B-spline and NURBS curves, have
been used to synthesize motion curves of cam mechanisms [8-13]. The main advan-
tage of using these curves for displacement functions is unlimited boundary con-
ditions from working requirements. Moreover, these curves and their derivatives
can be controlled by several parameters such as the knot vector, control points, and
weights. The knot vector is one of the important parameters since it is directly con-
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nected with the shape of these curves. The uniform spacing method is commonly
used for calculating the knot vector as shown in [8-11]. This method is very com-
fortable to calculate the knot vector. Other researches used the knot vector that is
specified in the increasing direction of the independent cam rotation [12, 13].

Until now, the knot vector is still interesting to calculate the shape of curves. In
this paper, we present the effect of the knot vector on the kinematics of the cam
motion. Several methods for computing the knot vector are used for NURBS curve.
Here, the study cases with a large number of boundary conditions of the displace-
ment, velocity, acceleration, and jerk are considered to synthesize of the motion
curve of cam mechanisms.

The organization of this paper is as follows. Section 2 shows the description of
NURBS and briefly presents a general synthesis of motion curves with NURBS.
The linear system of equations is established as follows. The computation of knot
vector for synthesizing motion curves is present in section 3. Section 4 shows the
effect of knot vector to motion curves by several examples. Conclusion is presented
in section 5.

2 Description of NURBS curve for cam motion

2.1 NURBS curve formulation

A detailed introduction to Non-Uniform Rational B-Spline (NURBS) curve can be
found in [4]. The NURBS curve of degree, p, is defined by n+1 control points Pi,
i = 0, ..., n and knot vector U. The NURBS curve is expressed as

C(u) =
∑

n
i=0 Ni,p(u)wi Pi

∑
n
j=0 N j,p(u)w j

, u ∈ [a,b]. (1)

Here, wi are weights and they are positive. Ni,p are the B-spline basis functions
that are defined over the knot vector U

U = {u0, u1, u2, ...,um}, (2)

with m = n+ p+1. The knot vector is a nondecreasing sequence of real number
and ui are called knots. The knot vector is also expressed as

U = {a, ..., a︸ ︷︷ ︸
p+1

, up+1, ...,um−p−1, b, ..., b︸ ︷︷ ︸
p+1

}. (3)

From Eq. (1), the basis functions Ni,p are calculated by using the knot vector asAuthor's
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Ni,0(u) =
{

1 for ui ≤ u < ui+1
0 otherwise

Ni,p(u) =
u−ui

ui+p−ui
Ni,p−1(u)+

ui+p+1−u
ui+p+1−ui+1

Ni+1,p−1(u).

(4)

Setting

Ri,p(u) =
Ni,p(u)wi

∑
n
j=0 N j,p(u)w j

, (5)

they are called the rational basis functions. Thus, the Eq. (1) can be written as

C(u) =
n

∑
i=0

Ri,p(u)Pi. (6)

Furthermore, the kth derivative of NURBS curve can be computed as

Ck(u) =
n

∑
i=0

Rk
i,p(u)Pi. (7)

2.2 Cam motion using NURBS curve

The derivative of NURBS curve with degree p is continuous up to (p− 1). There-
fore, in this paper, the NURBS curve with degree p = 5 is used for synthesizing the
motion curves because its derivative is continuous up to jerk function.

With the cam motion using NURBS curve, we denote u as the angle of cam
shaft. The given boundary conditions of the displacement, velocity, acceleration,
and jerk are respectively C(u j), C1(uk), C2(ul), and C3(uh) at u j, uk, ul , and uh.
For the number of boundary conditions, n+1 = d + e+ f +g, the linear system of
equations can be written as

C = RP , (8)

where the matrix C with size (n+1)×1 can be expressed by

C =
[
C(u j) C1(uk) C2(ul) C3(uh)

]T
, (9)

for j = 1, ...,d, k = 1, ...,e, l = 1, ..., f , and h = 1, ...,g.
Here, the matrix R with size, (n+ 1)× (n+ 1), presents the values of rational

basis functions, the first derivative, the second derivative, and the third derivative at
u j, uk, ul , and uh respectively. R can be written as

R =
[
Ri,p(u j) R1

i,p(uk) R2
i,p(ul) R3

i,p(uh)
]T
, for i = 0, ...,n. (10)
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From Eq. (8), P can be presented by

P =
[
P0, P1, ...,Pn

]T
. (11)

As mentioned above, Pi are control points.
Solving the linear system of equations as shown in Eq. (8), we obtain the control

points. It means that the motion curve of cam mechanisms is established.

3 Computation of the knot vector for synthesizing cam motion

3.1 Parameterization method to generate the knot vector

According to Eq. (5), the basis functions are established by the knot vector U as
shown in Eq. (3). For the number of boundary conditions at u j, uk, ul , and uh, the
input angle vector of camshaft, denoted by D, is arranged from small to big value of
the cam rotation in the order u j, uk, ul , and uh. Thus, for n+1 input angles, D can
be written as

D = [D0, D1, ..., Dn] . (12)

The vector, denoted by t = [t0, t1, ..., tn], has n+1 parameters. To compute these
parameters, we present three methods such as uniformly space method, chord length
method, and centripetal method. From Eq. (1), the angle of camshaft as u is in the
parameter domain [a, b], with a = D0 and b = Dn .

The uniformly space method has been presented in [6]. With the end parameters
t0 = a and tn = b, the remaining parameters are computed by


t0 = a

ti = a+ i
b−a

n
for i = 1, ...,n−1.

tn = b

(13)

The detail of chord length parameterization method can be found in [14]. The
end parameters are t0 = a and tn = b. The other parameters are calculated by



t0 = a

ti = a+

k
∑

i=1
|Di−Di−1|

n
∑

i=1
|Di−Di−1|

(b−a) for k = 1, ...,n−1.

tn = b

(14)Author's
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Respectively, the centripetal parameterization method [7] at the first and the end
parameters are t0 = a and tn = b. The remaining parameters are expressed as



t0 = a

ti = a+

k
∑

i=1
|Di−Di−1|α

n
∑

i=1
|Di−Di−1|α

(b−a) for k = 1, ...,n−1

tn = b

, (15)

with the positive power as α is in [0,1]. Selecting the value α affects the shape
of the displacement, velocity, acceleration, and jerk curves. In this paper, we do not
discuss the effect of the parameter α . For calculating the parameters ti according to
the centripetal method, we choose the value α = 1/2 that is the square root of chord
length method.

3.2 Knot vector generation

To generate the knot vector for NURBS after a set of parameters ti is obtained.
Using NURBS with degree p for motion curves, we need to compute m+ 1 knots
from n+ 1 parameters in t, where m = n+ p+ 1 . According to the knot vector in
Eq. (3), we have p+1 knots with u0 = u1 = ...= up = a and um−p = um−p+1 = ...=
um = b. The remaining n− p interval knots (up+1, ...,um−p−1) are computed from
the parameters ti.

The uniformly spaced knot vector can be calculated by [6]


u0 = u1 = ...= up = a

u j+p = t0 +
j

n− p+1
(b−a) for j = 1,2, ...,n− p.

um−p = um−p+1 = ...= um = b

(16)

For the chord length and the centripetal method, the knot vector is computed by
the average method [2]


u0 = u1 = ...= up = a

u j+p = t0 +
1
p

j+p−1
∑

i= j
ti for j = 1,2, ...,n− p.

um−p = um−p+1 = ...= um = b

(17)Author's
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4 Results and discussions

This section presents two examples with a large number of boundary conditions. In
the first example, the follower of the cam mechanism satisfies 20 boundary condi-
tions (see in [8]) of the displacement, velocity, and acceleration as shown by start
signs in Fig. 1. From the given angles of camshaft, the input angle vector is ex-
pressed as D = [0, 0, 0, 0.7854, 0.7854, 1.5708, 1.5708, 1.5708,2.3562, 2.3562,
2.6180, 3.1416, 3.1416, 3.1416, 3.6652, 3.9270, 3.9270, 4.7124,4.7124, 4.7124].
The knot vectors for the uniform space, chord length and centripetal methods are
computed in section 3.

Fig. 1 Comparison of motion curves for three cases of knot vector

From the knot vector, basis functions Ni,p and rational basis functions Ri,p are
established (see Eq. (4) and Eq. (5)). The displacement function is computed from
calculating the control points in Eq. (8). The results of the displacement, velocity,
acceleration, and jerk diagram (SVAJ diagram) show in Fig. 1. It is seen that the
difference of the displacement curves is not changed much. However, the velocity,
acceleration, and jerk curves are much different. The maximum values of velocity,
acceleration, and jerk using chord length method are much smaller than others.

As the second example, we consider the cardiovascular mock loop where the
motion of the human heart is simulated. The measurement of the displacement fol-
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Fig. 2 SVAJ diagram comparison of uniform, chord length, and centripetal methods

lower is shown by star signs in Fig. 2 with 27 values of displacement. Because
of the discontinuity of the velocity and acceleration, the infinite values of the ac-
celeration and jerk will occur, respectively. Thus, to avoid the discontinuity of the
velocity, acceleration, and jerk, some boundary conditions are added at the start
and the end points of the velocity, acceleration, and jerk, such that their values are
equal to zero. Respectively, the input angle vector with 33 elements is written as D=
[0, 0, 0, 0, 0.2417, 0.4833, 0.725, 0.9666, 1.2083, 1.45, 1.6916, 1.9333, 2.1749,
2.4166, 2.6583, 2.8999, 3.1416, 3.3833, 3.6249, 3.8666,4.1082, 4.3499,4.5916,
4.8332, 5.0749, 5.3165, 5.5582, 5.7999, 6.0415,6.2832,6.2832,6.2832,6.2832].

Fig. 2 shows SVAJ diagram in one cycle of the cam mechanism. The displace-
ment, velocity, acceleration, and jerk curves in case of the chord length and the
centripetal method are coincided because of the same as vector t, also knot vector
U. As D above, the difference between two elements, |Di−Di−1|(i= 5, ...,30), does
not change and the remaining elements are equal to zero. In this case, the param-
eters ti are not affected by the power α of the centripetal method. Thus, they have
similar values in both the chord length method and the centripetal method, likewise
the value of knots ui. As shown in Fig. 2, the displacement for the uniformly spaced
method is slightly oscillating. Therefore, the peak values of the velocity, acceler-
ation, and jerk curves occur. The maximum values of velocity, acceleration, and
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jerk with the chord length and the centripetal methods are much smaller than the
uniformly spaced method.

5 Conclusions

Using NURBS curve for cam motion synthesis is flexible and robust because it
satisfies arbitrary boundary conditions of displacement, velocity, acceleration, and
jerk constraints. Furthermore, NURBS curve and its derivative are controlled by
several parameters such as knot vector, control points, and weights. The evaluation
of effecting the knot vector on the displacement, velocity, acceleration, and jerk
curves is presented in this paper. Several methods for computing the knot vector of
NURBS used to synthesize the motion curves are presented. The results show that
the maximum values of acceleration and jerk in case of the chord length method are
smaller than the other methods. Especially, these values for chord length method are
much smaller than the uniform method.
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