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Abstract. The planar 3-RRR parallel manipulator is known to have six assembly m 0 T,
analysing it in the framework of spatial kinematics reveals that it has a total elve bly

modes, six in each of the two possible operation modes. The modes are deriv udy pa-
rameter formulation first, and later confirmed in another formulation in int-spacgy and finally
visualised in terms of the planar constraint curves generated by the sul manipulator.
Numerical results show that all the twelve modes can be real for ¢
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1 Introduction \

The planar 3-RRR manipulat six assembly modes, as mentioned in many ex-

isting reports, e.g., Gosseliasenhal owever, if the forward kinematic analysis of
this manipulator is perfo % the€ joint space, it shows twelve assembly modes.
In this work, this pr estigated from multiple perspectives, namely: the
kinematic mappi iidy; the constraints in the joint space; and the constraints
generated s of the manipulator. This work is similar to the study
of the 3-RP or by Husty [3], using the Stiidy parameter representation
of SE(2) the current work, the full spatial setup is used in the kinematic

i , which leads to results that are strikingly similar. On the other

of the constraint equations in the joint-space of the 3-RPS. Analogous
e obtained in this case as well, and nice inferences can be drawn based
n thése to present a consistent interpretation of the results obtained from various
proaches. The main results are that the manipulator has six assembly modes in
ach of the two of its operation modes, though only one mode is apparent at a time,
as unlike in the 3-RPS, a transition between the modes is not (physically) possible
in this case. It is (mathematically) possible for all the assembly modes to be real at
the same time, as shown with the help of a numerical example. Also, the solutions
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can be explained geometrically in terms of the intersections of the constraint curves
generated by the sub-chains of the manipulator.

The rest of the paper is presented as follows: Section 2 describes the forward
kinematic analysis of the problem in the task space while Section 3 discusses the
same problem in the joint space. Section 4 concludes the paper.

2 Forward kinematic analysis using Stiidy parameters

The forward kinematic problems of planar 3-degrees-of-freedom parallel manipul
tors have been studied using the planar kinematic mapping (see, e.g., [3] in casg,0f
3-RPR manipulator). In the following, spatial kinematic mapping is used

the planar 3-RRR manipulator, leading to certain new and interestin erv
2.1 Kinematic model %’: )
Ya

Fig. 1: Planar 3-RRR parallel manipulator

The manipulator is shown in Fig. 1. The fixed base b;byb3 and the moving
atform p,p,p; are both equilateral triangles, of side lengths b and a respec-
tively. Three limbs of R-R-R architecture, each having an actuated link of length /
and a passive link of length r, connect the two platforms. The active joint angles
are given by @ = [0,6,,65]", and the passive joint angles by ¢ = [y, ¢, 03] ".
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The frame {A}, given by Os-X4YZ,, serves as the global frame of reference.
Likewise, frame {B}, attached to the moving platform, denotes the moving frame.
The vertices of the two platforms are expressed in projective coordinates: Zp, =

§
0,0,0,117, 2py =[0,0,0,1]", #py = [4,432,0,1] ,and by =[0,0,0,1]", b, =

[6,0,0,1]7, 4b3 = {%, @,0, 1] T, where the fourth coordinate, 1, is the projective
coordinate, and the leading superscripts A and B indicate the frame of reference.
The frame {B} is related to {A} through a 4 x 4 homogeneous transformation
matrix, ’gT, expressed in terms of the Stiidy-parameters. The Stiidy parameters,
namely, Xo : X1 : X2 1 X3 1Yo : Y] : Y2 Y3, represent spatial motions of a rigid-body via
the kinematic map x : P’ — SE(3), when they satisfy the following constraints (se€}

e.g., [5D:
. N . [ ]
Equation of the Stiidy quadric:  xoyo +x1y1 +X2y2 +X3y3 =
Normalisation constraint: G4 =1. :\ 2)
2.2 Kinematic constraint equations and the o xodes

The loop-closure constraints are derived from the fdc§thal assive links are rigid,
and have a constant length r each:

||Api_ASiH2_r2:o7 i=1,2,3, 3

where “s; locate the tip of the active 1iftks, giyen by s = [Icos 8y, Isin6;,0,1]T,
A5y = [b+1cos 6y, Isin6,,0, 1)L {*s3 = 2% I cos 63, @ +1sin65,0,1]".

Equations (3) locate each points p; on a sphere centered at s;. To incor-
porate the planar nature gfthic@manip#lator, additional constraints are generated, by
setting the Z component A§; to zero, and manipulating them a little:

3 X3Y0 +X2y1 —X1y2 — X0y3 =0, 4
N2 : x1x3 — xpx2 = 0, @)
M3 : xpx1; +x2x3 =0. (6)

Mode 1, characterised by x; = x; =0, x(z) +x§ #£0:

From Eq. (1) and Eq. (4), one finds that yo = y3 = 0, as the non-trivial solution
leads to x5 + x3 = 0, which cannot be admitted. Thus, the variables x1,x2,y0,3
are eliminated from the equations in this mode, and the normalising constraint (in
Eq. (2)) gets reduced to x% +x§ =1.
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e Mode 2, characterised by xg = x3 =0, x% +x% #0:
Using a similar argument, it can be established that y; = y» = 0 in this operation
mode; the normalising constraint (Eq. (2)) becomes x% —|—x% =1.

It may be noted that the two modes described above cover all the possible solutions
of the forward kinematics problem. Furthermore, the two modes are disjoint, as
their intersection would lead to the exceptional generator, characterised by xy =
x1 = xp = x3 = 0, which is physically inadmissible.

2.3 Derivation of the Forward Kinematic Univariate (FKU)

In the following, the loop-closure equations are reduced to a univarigge pol ]

equation (termed as the Forward Kinematic Univariate (FKU) [6 ]) fo :

quence of elimination of variables. For the sake of brevity, only mo: %ned
In mode 1, Egs. (2, 3) reduce to:

1 12— 1%+ 41sin 0; (xoys +x3y1 ) + 4 cos 0) (xoy1 — x3y2 (v} 7
gz:( —b)Y+12—r ?+2lcos 6 (a (263 1) +b+2 2x3 +4abx3
—4x3yy(a+b) + 4l sin 6 (—axoxs + xoy2 + X (8)

+4bxoy1 +4(y1 +13) =
g (a— b) +12P—7 +1sin63(a V3 2x3—1 ())C3 +\[b+4x0y2

+4x3y1) +lcos 93 mﬁ( - 1 + b+ 4xoy1 — 4x3y2> o
+4abx3 +2x3(a+ b 1— yz —2axpy| — 2\faxoy2 ~+ 2bxoy1
+2v/3bxgy; +4(y
g4 x5 +x3—1=0. (10)
Therefore, mo re nted by the ideal (g}, g2, 23, 84). The steps to derive the
FKU from ghisgare?
1. Comppte'h g1, and hy = g3 — g1, which are linear in yq,ys.

m h] = O, h2 =0.
values of y1, y2 in g1 =0, to obtain the equation g} = 0 in xo and x3.
omial g} is of degree six in x3.
the polynomial g} by g, treating both as polynomials in x3, and obtain
xpression for x3 by solving the linear equation resulting from setting the
remainder to zero.
. Substitute x3 back in g4 to obtain the univariate in xo.

The FKU is of degree 6 in x(%, hence there are a maximum of 6 real assembly modes,
as each root is counted twice due to the nature of the kinematic map. A similar
analysis leads to analogous results in mode 2.
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2.4 Numerical results and interpretations

The above formulation is demonstrated via a numerical example, for the architecture
parameters' [ = 6/7, r =13/14,a = 11/14 and b = 1. The set of input joint angles
given by @ = [r/4, 57/4, 3m/2]" is found to produce 6 real solutions for each of
the modes, which are listed in Table 1.

Table 1: Twelve real solutions to forward kinematics

Operation | Assembly N
mode | mods o | x| x| x|y | v | oy | oy
1T |-0985] 0 | 0 |-0172] 0 |-0.057|0.025| 0
2 0941 0 | 0 [0338| 0 |0379]-0.033] 0
Mode 1 3 |-0852] 0 | 0 ]0523| 0 ]-0.360]0353 @0
4 [0381] 0 | 0 [0925] 0 [0.060]-0.011
5 0350 0 | 0 0 0
6 |-0169] 0 | 0
1 0 |-0.983]-0.185
2 0 [-0.941]0338
3 0 |-0.845/0.535
Mode 2 i 0 |-0.369[0.930
5 0 [-0341]-0.940
6 0 [-0.172]0.985

finite screw motions generated by the
pure rotation about the discrete s&v ) [4], which is parallel to the Z axis
and intersects the X Y plane at x =gp> /x3, W= y1/x3. The pitch of the screw is null,

% involves a rotation through 7 about a horizontal

P8 in the plane is found to be y = (xpx +y3) /x;. Such
the 7-screws in [4]. Fig. 2b depicts the motion and the
rthe assembly mode 3 of operation mode 2 listed in Table 1.

sembly of the manipulat
DSA. The e i0o
screws have bee
correspon

3 Forgard'kinematic analysis in the joint space

ection, the forward kinematic analysis is performed in terms of the passive
joint angles. Existence of the operation modes is brought out and the relationship
etween the two modes is established in terms of certain properties of the FKU.

1 All the linear dimensions are scaled by the base length, b, and are therefore unit-less; all angles
are in radians.
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Yy

(a) Mode 1: The triangle Zp,Zp,fp; rep-
resented in local frame, when rotated about
the DSA, transforms to the final posi-
tion 4 p,4 p,A p; (filled triangle), indicating a
pure-rotation.

Fig. 2: Screw motion characteristiés peration modes

3.1 Derivation of the FK U}(d rpretation

In this case, the end-points of assive links are expressed in terms of the active

p; ="s1+[rcos¢y,rsing;,0,1]",

Ap, =485y +[rcos ¢y, rsi ] =As3+[rcos ¢3,rsin¢3,0,1] ", where 4s;,

i=1, 2, 3 arggivend 2. Equating the distance between each distinct pair

of vertices of t| form to the known value a, the loop-closure constraints
are obtain

1(Ongd) = ("p1 —"p2)- ("py —"py) —a® =0, (11

,93) £(*p, = p3) - (*py—"p3) —2a*(1 —cos ) =0, (12)

3(91,93) 2("p3—"p1)- ("3 —"p)) —a’ =0, (13)

= 1/3 is the interior angle of the triangular moving platform. The param-
er v is retained in its symbolic form to facilitate certain inferences drawn later in
e paper. Equations (11-13) are linear in the sine and cosine of each of the passive
angles, from which an FKU in 7, = tan(¢,/2) can be obtained easily following the
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elimination/transformation sequence depicted below?:

J1(01,92) =07 xo _oP™ _
f;(¢i7¢3)=0>4 u(¢27¢3)—07t3>\/1(l‘3,¢2)—0 Xy () =0,

[0
f2(92,03) =0 ——= 2 (t3,¢2) =0

The notation ‘—’ denotes the elimination of the variable x from two algebraic
i — i

equations preceding it, while ‘Lﬁ indicates the conversion of an equation in ¢;

to its polynomial equivalent in the variable ¢; = tan(¢;/2). The equation w(¢,) =

when converted to a polynomial in 7, = tan(¢,/2), is of degree 12, indicating t

possibility of existence of 12 real assembly modes—a result that matches

previous analysis. The FKU decomposes into two factors as follows:@

w(y.2) = j1(v,12) j2(7,12), where ji(7,12) = jo(— (14)

Equation (14) confirms the relation between the two modes, as c responds
to a moving platform that has been flipped up-side down, qulva tly, one in

which the sequence of the vertices have been changed CW. Also, it
has been verified symbolically, that j;(,;) = 0 is the or the mode i, i =1, 2.

3.2 Geometric interpretation of the operation modes

It is well-known that the forwaml ticy of certain planar three degrees-of-
freedom parallel manipulators jsfequivalewfto the problem of intersection of the
coupler curve of a four-bar m ism and a circle, which leads to a maximum of
six assembly modes (see, g
of p; as a part of the fo b-Chain s; p, p,s251, with s1s7 as its ground link,
correspondin tom i
in Fig. 2a. esents the locus of p; as a part of the sub-chain b3s3ps,
once the input i
and is obtaingd by r
rformiiag a similar analysis. The solutions marked on Fig. 3b correspond
to thgnumesics presented in Section 2.4. These figures can be thought of as a visual

2 The derivation of this FKU is neither difficult, nor novel; hence the details are omitted for the
sake of brevity.
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2.0)
Ya -—-Coupler curve (Mode1) [ Coupler curve (Mode 1) @ Roots (Mode 1)
—— Coupler curve (Mode 2) M Roots (Mode 2)

(a) Constraint curves (b) Points of intersecti

Fig. 3: Location of p; as the intersection of the two planagf curyes.

4 Conclusion

This paper analyses the planar 3-RRR manipulatérj\to 1sh its two operation
modes, and the six assembly modes in each. Alhs, result is first derived using the
Stiidy parameters, and then corroborated with the re obtained from the study of
the kinematics of the manipulator in its4®int space. Finally, the results are unified
using a graphical visualisation ow modes, in terms of the intersection
of the constraint curves generated by the sub-ghains of the manipulator. It is shown,

that mathematically all the tw assembly modes can be real at the same time,
though physically it is imposs r the manipulator to transit from one operation
mode to the other, and h oB€ operation mode is apparent any time.
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