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Abstract. The planar 3-RRR parallel manipulator is known to have six assembly modes. However,
analysing it in the framework of spatial kinematics reveals that it has a total of twelve assembly
modes, six in each of the two possible operation modes. The modes are derived using a Stüdy pa-
rameter formulation first, and later confirmed in another formulation in the joint-space, and finally
visualised in terms of the planar constraint curves generated by the sub-chains of the manipulator.
Numerical results show that all the twelve modes can be real for certain inputs.

Key words: Operation modes, Stüdy’s kinematic mapping, Discrete Screw Axis (DSA), Forward
Kinematic Univariate (FKU)

1 Introduction

The planar 3-RRR manipulator has six assembly modes, as mentioned in many ex-
isting reports, e.g., Gosselin et al [1]. However, if the forward kinematic analysis of
this manipulator is performed in the joint space, it shows twelve assembly modes.
In this work, this problem is investigated from multiple perspectives, namely: the
kinematic mapping of Stüdy; the constraints in the joint space; and the constraints
generated by the sub-chains of the manipulator. This work is similar to the study
of the 3-RPR manipulator by Husty [3], using the Stüdy parameter representation
of SE(2). However, in the current work, the full spatial setup is used in the kinematic
modelling, as in [4], which leads to results that are strikingly similar. On the other
hand, this work is also motivated by [6], where the kinematic analysis is performed
on the basis of the constraint equations in the joint-space of the 3-RPS. Analogous
results are obtained in this case as well, and nice inferences can be drawn based
on these to present a consistent interpretation of the results obtained from various
approaches. The main results are that the manipulator has six assembly modes in
each of the two of its operation modes, though only one mode is apparent at a time,
as unlike in the 3-RPS, a transition between the modes is not (physically) possible
in this case. It is (mathematically) possible for all the assembly modes to be real at
the same time, as shown with the help of a numerical example. Also, the solutions
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can be explained geometrically in terms of the intersections of the constraint curves
generated by the sub-chains of the manipulator.

The rest of the paper is presented as follows: Section 2 describes the forward
kinematic analysis of the problem in the task space while Section 3 discusses the
same problem in the joint space. Section 4 concludes the paper.

2 Forward kinematic analysis using Stüdy parameters

The forward kinematic problems of planar 3-degrees-of-freedom parallel manipula-
tors have been studied using the planar kinematic mapping (see, e.g., [3] in case of
3-RPR manipulator). In the following, spatial kinematic mapping is used to study
the planar 3-RRR manipulator, leading to certain new and interesting observations.

2.1 Kinematic model

Fig. 1: Planar 3-RRR parallel manipulator

The manipulator is shown in Fig. 1. The fixed base bbb1bbb2bbb3 and the moving
platform ppp1 ppp2 ppp3 are both equilateral triangles, of side lengths b and a respec-
tively. Three limbs of R-R-R architecture, each having an actuated link of length l
and a passive link of length r, connect the two platforms. The active joint angles
are given by θθθ = [θ1,θ2,θ3]

>, and the passive joint angles by φφφ = [φ1,φ2,φ3]
>.
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The frame {A}, given by OOOA-XXXAYYY AZZZA, serves as the global frame of reference.
Likewise, frame {B}, attached to the moving platform, denotes the moving frame.
The vertices of the two platforms are expressed in projective coordinates: B ppp1 =

[0,0,0,1]>, B ppp2 = [a,0,0,1]>, B ppp3 =
[

a
2 ,
√

3 a
2 ,0,1

]>
, and Abbb1 = [0,0,0,1]>, Abbb2 =

[b,0,0,1]>, Abbb3 =
[

b
2 ,
√

3 b
2 ,0,1

]>
, where the fourth coordinate, 1, is the projective

coordinate, and the leading superscripts A and B indicate the frame of reference.
The frame {B} is related to {A} through a 4 × 4 homogeneous transformation
matrix, A

BTTT , expressed in terms of the Stüdy-parameters. The Stüdy parameters,
namely, x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3, represent spatial motions of a rigid-body via
the kinematic map κκκ : P7→ SE(3), when they satisfy the following constraints (see,
e.g., [5]):

Equation of the Stüdy quadric: x0y0 + x1y1 + x2y2 + x3y3 = 0, (1)

Normalisation constraint: x2
0 + x2

1 + x2
2 + x2

3 = 1. (2)

2.2 Kinematic constraint equations and the operation modes

The loop-closure constraints are derived from the fact that the passive links are rigid,
and have a constant length r each:

‖A pppi− Asssi‖2− r2 = 0, i = 1, 2, 3, (3)

where Asssi locate the tip of the active links, given by Asss1 = [l cosθ1, l sinθ1,0,1]>,
Asss2 = [b+ l cosθ2, l sinθ2,0,1]>, Asss3 = [ b

2 + l cosθ3,
√

3 b
2 + l sinθ3,0,1]>.

Equations (3) locate each of the points pppi on a sphere centered at sssi. To incor-
porate the planar nature of the manipulator, additional constraints are generated, by
setting the Z component of A pppi− Asssi to zero, and manipulating them a little:

η1 : x3y0 + x2y1− x1y2− x0y3 = 0, (4)
η2 : x1x3− x0x2 = 0, (5)
η3 : x0x1 + x2x3 = 0. (6)

The forward kinematic problem is represented by the set of Equations (1- 6). An
analysis of the planarity constraints (Eqs. (4-6)) along with the Stüdy quadric equa-
tion (Eq. (1)) and the normalisation constraint (Eq. (2)) lead to two distinct operation
modes (see [4] for a similar analysis of the 3-RPS manipulator):

• Mode 1, characterised by x1 = x2 = 0, x2
0 + x2

3 6= 0:
From Eq. (1) and Eq. (4), one finds that y0 = y3 = 0, as the non-trivial solution
leads to x2

0 + x2
3 = 0, which cannot be admitted. Thus, the variables x1,x2,y0,y3

are eliminated from the equations in this mode, and the normalising constraint (in
Eq. (2)) gets reduced to x2

0 + x2
3 = 1.
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• Mode 2, characterised by x0 = x3 = 0, x2
1 + x2

2 6= 0:
Using a similar argument, it can be established that y1 = y2 = 0 in this operation
mode; the normalising constraint (Eq. (2)) becomes x2

1 + x2
2 = 1.

It may be noted that the two modes described above cover all the possible solutions
of the forward kinematics problem. Furthermore, the two modes are disjoint, as
their intersection would lead to the exceptional generator, characterised by x0 =
x1 = x2 = x3 = 0, which is physically inadmissible.

2.3 Derivation of the Forward Kinematic Univariate (FKU)

In the following, the loop-closure equations are reduced to a univariate polynomial
equation (termed as the Forward Kinematic Univariate (FKU) [6]) following a se-
quence of elimination of variables. For the sake of brevity, only mode 1 is explained.

In mode 1, Eqs. (2, 3) reduce to:

g1 : l2− r2 +4l sinθ1(x0y2 + x3y1)+4l cosθ1(x0y1− x3y2)+4(y2
1 + y2

2) = 0, (7)

g2 : (a−b)2 + l2− r2 +2l cosθ2
(
a
(
2x2

3−1
)
+b+2x0y1−2x3y2

)
+4abx2

3

−4x3y2(a+b)+4l sinθ2(−ax0x3 + x0y2 + x3y1)−4ax0y1

+4bx0y1 +4(y2
1 + y2

2) = 0,

(8)

g3 : (a−b)2 + l2− r2 + l sinθ3(a
(√

3
(
2x2

3−1
)
−2x0x3

)
+
√

3b+4x0y2

+4x3y1)+ l cosθ3

(
a
(

2x3

(√
3x0 + x3

)
−1
)
+b+4x0y1−4x3y2

)
+4abx2

3 +2x3(a+b)
(√

3y1− y2

)
−2ax0y1−2

√
3ax0y2 +2bx0y1

+2
√

3bx0y2 +4(y2
1 + y2

2) = 0,

(9)

g4 : x2
0 + x2

3−1 = 0. (10)

Therefore, mode 1 is represented by the ideal 〈g1,g2,g3,g4〉. The steps to derive the
FKU from this are:

1. Compute h1 = g2−g1, and h2 = g3−g1, which are linear in y1,y2.
2. Obtain y1, y2 from h1 = 0, h2 = 0.
3. Substitute the values of y1, y2 in g1 = 0, to obtain the equation g′1 = 0 in x0 and x3.

The polynomial g′1 is of degree six in x3.
4. Divide the polynomial g′1 by g4, treating both as polynomials in x3, and obtain

an expression for x3 by solving the linear equation resulting from setting the
remainder to zero.

5. Substitute x3 back in g4 to obtain the univariate in x0.

The FKU is of degree 6 in x2
0, hence there are a maximum of 6 real assembly modes,

as each root is counted twice due to the nature of the kinematic map. A similar
analysis leads to analogous results in mode 2.
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2.4 Numerical results and interpretations

The above formulation is demonstrated via a numerical example, for the architecture
parameters1 l = 6/7, r = 13/14, a = 11/14 and b = 1. The set of input joint angles
given by θθθ = [π/4, 5π/4, 3π/2]> is found to produce 6 real solutions for each of
the modes, which are listed in Table 1.

Table 1: Twelve real solutions to forward kinematics

Operation
mode

Assembly
mode

x0 x1 x2 x3 y0 y1 y2 y3

Mode 1

1 -0.985 0 0 -0.172 0 -0.057 0.025 0
2 -0.941 0 0 0.338 0 0.379 -0.033 0
3 -0.852 0 0 0.523 0 -0.360 0.353 0
4 -0.381 0 0 0.925 0 0.060 -0.011 0
5 -0.350 0 0 -0.937 0 -0.058 -0.299 0
6 -0.169 0 0 0.986 0 -0.116 0.795 0

Mode 2

1 0 -0.983 -0.185 0 -0.155 0 0 0.178
2 0 -0.941 0.338 0 0.278 0 0 -0.335
3 0 -0.845 0.535 0 -0.456 0 0 -0.127
4 0 -0.369 0.930 0 0.028 0 0 -0.835
5 0 -0.341 -0.940 0 -0.099 0 0 0.544
6 0 -0.172 0.985 0 -0.133 0 0 -0.083

It is of interest to study the operation modes of the manipulator in terms of the
finite screw motions generated by them. In mode 1, the motion is equivalent to a
pure rotation about the discrete screw axis (DSA) [4], which is parallel to the Z axis
and intersects the X Y plane at x = y2/x3, y =−y1/x3. The pitch of the screw is null,
as expected. Fig. 2a shows the screw motion, using the numerics corresponding to
assembly mode 2 of operation 1 from Table 1.

The motion generated in mode 2 is not physically realisable without a disas-
sembly of the manipulator, as it involves a rotation through π about a horizontal
DSA. The equation of the DSA in the plane is found to be y = (x2x+ y3)/x1. Such
screws have been termed as the π-screws in [4]. Fig. 2b depicts the motion and the
corresponding DSA for the assembly mode 3 of operation mode 2 listed in Table 1.

3 Forward kinematic analysis in the joint space

In this section, the forward kinematic analysis is performed in terms of the passive
joint angles. Existence of the operation modes is brought out and the relationship
between the two modes is established in terms of certain properties of the FKU.

1 All the linear dimensions are scaled by the base length, b, and are therefore unit-less; all angles
are in radians.
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(a) Mode 1: The triangle B ppp1
B ppp2

B ppp3 rep-
resented in local frame, when rotated about
the DSA, transforms to the final posi-
tion A ppp1

A ppp2
A ppp3 (filled triangle), indicating a

pure-rotation.

(b) Mode 2: The interim position (dashed)
is reached through π-rotation about the DSA
from the home position B ppp1

B ppp2
B ppp3. The final

position A ppp1
A ppp2

A ppp3 (filled) is then attained
through translation along the DSA.

Fig. 2: Screw motion characteristics of the operation modes

3.1 Derivation of the FKU and its interpretation

In this case, the end-points of the passive links are expressed in terms of the active
and the passive joint angles as follows: A ppp1 =

Asss1 +[r cosφ1,r sinφ1,0,1]>,
A ppp2 =

Asss2+[r cosφ2,r sinφ2,0,1]>,A ppp3 =
Asss3+[r cosφ3,r sinφ3,0,1]>, where Asssi,

i = 1, 2, 3 are given in Section 2.2. Equating the distance between each distinct pair
of vertices of the moving platform to the known value a, the loop-closure constraints
are obtained as:

f1(φ1,φ2),(A ppp1− A ppp2) · (A ppp1− A ppp2)−a2 = 0, (11)

f2(φ2,φ3),(A ppp2− A ppp3) · (A ppp2− A ppp3)−2a2(1− cosγ) = 0, (12)

f3(φ1,φ3),(A ppp3− A ppp1) · (A ppp3− A ppp1)−a2 = 0, (13)

where γ = π/3 is the interior angle of the triangular moving platform. The param-
eter γ is retained in its symbolic form to facilitate certain inferences drawn later in
the paper. Equations (11-13) are linear in the sine and cosine of each of the passive
angles, from which an FKU in t2 = tan(φ2/2) can be obtained easily following the
Author's
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elimination/transformation sequence depicted below2:

f1 (φ1,φ2) = 0
f3 (φ1,φ3) = 0

)
×φ1−→ u(φ2,φ3) = 0

φ3→t3
−−−→ v1(t3,φ2) = 0

f2(φ2,φ3) = 0
φ3→t3
−−−→ v2(t3,φ2) = 0

 ×t3−→ w(φ2) = 0.

The notation ‘ ×x−→’ denotes the elimination of the variable x from two algebraic

equations preceding it, while ‘
φi→ti
−−−→’ indicates the conversion of an equation in φi

to its polynomial equivalent in the variable ti = tan(φi/2). The equation w(φ2) = 0,
when converted to a polynomial in t2 = tan(φ2/2), is of degree 12, indicating the
possibility of existence of 12 real assembly modes—a result that matches with the
previous analysis. The FKU decomposes into two factors as follows:

w(γ, t2) = j1(γ, t2) j2(γ, t2), where j1(γ, t2) = j2(−γ, t2). (14)

Equation (14) confirms the relation between the two modes, as mode 2 corresponds
to a moving platform that has been flipped up-side down, or equivalently, one in
which the sequence of the vertices have been changed from CCW to CW. Also, it
has been verified symbolically, that ji(γ, t2) = 0 is the FKU for the mode i, i = 1, 2.

3.2 Geometric interpretation of the operation modes

It is well-known that the forward kinematics of certain planar three degrees-of-
freedom parallel manipulators is equivalent to the problem of intersection of the
coupler curve of a four-bar mechanism and a circle, which leads to a maximum of
six assembly modes (see, e.g., [2]). In Fig. 3a, the dotted (blue) curve is the locus
of ppp3 as a part of the four-bar sub-chain sss1 ppp1 ppp2sss2sss1, with sss1sss2 as its ground link,
corresponding to mode 1 of operation, superimposed over the assembly mode shown
in Fig. 2a. The circle represents the locus of ppp3 as a part of the sub-chain bbb3sss3 ppp3,
once the input θ3 is given. The solid (red) curve in Fig. 3b corresponds to the mode 2,
and is obtained by rotating the coupler link ppp1 ppp2 about the axis XXXB by π-radians,
and then performing a similar analysis. The solutions marked on Fig. 3b correspond
to the numerics presented in Section 2.4. These figures can be thought of as a visual
interpretation of Eq. (14).

2 The derivation of this FKU is neither difficult, nor novel; hence the details are omitted for the
sake of brevity.
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(a) Constraint curves (b) Points of intersection

Fig. 3: Location of ppp3 as the intersection of the two planar curves.

4 Conclusion

This paper analyses the planar 3-RRR manipulator, to establish its two operation
modes, and the six assembly modes in each. This result is first derived using the
Stüdy parameters, and then corroborated with the results obtained from the study of
the kinematics of the manipulator in its joint space. Finally, the results are unified
using a graphical visualisation of the assembly modes, in terms of the intersection
of the constraint curves generated by the sub-chains of the manipulator. It is shown,
that mathematically all the twelve assembly modes can be real at the same time,
though physically it is impossible for the manipulator to transit from one operation
mode to the other, and hence only one operation mode is apparent any time.
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