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Abstract. Finding the workspace of cable driven parallel robots (CDPR) with sagging
e

elastic and deformable cables) is a problem that has never been fully addresse@in the literaturefas
this is a complex issue: the inverse kinematics may have multiple solutions and quatipassthat
describe the problem are non-linear and non algebraic. We address here the problem termining

an approximation of the border of horizontal cross-sections of the works C with 6
cables. We present an algorithm that give an outline of this border but al evaral theoretical
issues. We then propose another algorithm that allow to determine ygon roximation of
the workspace border induced by a specific constraint. All these algorit are illustrated on a very

large CDPR.
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1 Introduction \

Since a few year there has be;
parallel robots (CDPR) wh
actuators. Beside the ¢

significant renewal in the interest for cable-driven
coiling cables as actuators instead of rigid linear

accuracy, excellent lod ratio) CDPR have the huge advantage to possibly
provide a pdce with excellent lifting capacity: our MARIONET-
CRANE rob ing capacity of 2.5 tons has been deployed outdoor over a
75m x workspace. But having such large workspace requires having

very larg ths so that the elasticity and own mass of the cables affect the
e platform (positioning accuracy, stiffness,...). The purpose of

st to identify the factors that may limit the robot workspace and then

but the unilateral action of the cables, that can only pull but cannot push, intro-
duces new workspace limiting factors. Numerous works have addressed the prob-
lem of workspace calculation of CDPR [1, 2, 3, 4, 5, 6, 8, 10, 12, 17, 20, 22] but
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most of them assume non deformable and non elastic cables. Discretisation-based
method has been proposed for elastic cables [11] and for a simplified sagging cable
model [18]. But this approach requires to assume that the inverse kinematics prob-
lem has a single solution, which is not true for a complete sagging cable model [14].
In this paper we will propose a preliminary algorithm for computing cross-sections
of the CDPR workspace using a realistic cable model, assuming that the orientation
and altitude of the platform is fixed and that the robot has 6 cables.

2 Notations

We will assume that the output of the coiling system for cable i is a single poin

Z with an arbitrary origin O whose z axis is the local vertical and a framg
to the platform (the mobile frame) with G, the center of mass ot®h pla
origin and arbitrary x,y, z axis. We then consider the vertical plane t
i-th cable and we define another frame Z. for the i-th cable wisf drigi
same z axis than &% and a y axis that is perpendicular to the p n§th at rest
of the i-th cable will be denoted Lf).

3 Cable model @

In this paper we will use the Irvine sagging cable mddel that is valid for elastic and
deformable cable with mass [9]. Exp ntal works have shown a very good agree-
ment between this model and thébehaya cables classically used for CDPR [19].
This model is established in th framg f which the coordinates of A; are (0,0,0)

zontal forces F;, F; are exgxte he cable at point B;.
The coordinate x,z g

o Etpgls—L) g, —HglotF;
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w E1 Young modulus of the cable material, u its linear density, Ag the
surfa e cable cross-section and F,, > 0. The coordinates of B are obtained for

= [ and are related to the forces F;, F; by:
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4 Workspace limitations

4.1 Cable tension limit and cable sagging

An evident reason that may limit the workspace is the maximal allowed ten-
sion in the cable. The maximal tension 74 in a cable is obtained at point A and
should be lower than the maximal allowed tension for the cable 7j;, i.e. T
\/Fx2 + (FZ + .u'gLO)2 < Tim-

A less obvious reason that may limit the workspace of a CDPR is that thesagg
of some cable(s) may lead to have the cable on the ground. Der1vm he ca % p
equation shows that z is extremal for so = Lo+ F;/(ug). If 5o lie in t :
then the cable is sagging and its minimal altitude z,, is obtained
by sp in equation (1). If z, is the ground altitude, then we sho@ld

so € [0,Lo), then the lowest point of the cable is B and we wil t this point
cannot reach the ground.

>

long to the workspace of a CDPR is that
s at least one solution in the Ly’s. We
cables. Being given a pose of the platform
aving nknowns (the Fy, F;, Ly for each cable).
Additional equations are ob by considering the mechanical equilibrium of the
CDPR. Let f; be the fope@ y the cable at point B; by the i-th cable. We
have already seen that ofients of f; in the reference frame . are (F.,0, F )
For a givengocati
to a rotatidn
R;(FL,0,&)7%.

4.2 Inverse kinematics and Singulari

A necessary condition for a pose to
the inverse kinematics (IK) fogthis gos
thus consider the IK of a CDA

(2,3) provide 2n equation whil

axis so that the components of f; in % are obtained by
mechanical equilibrium equations may thus be written as:

j=n j=n
Y fi=mg Y GBixfj=0 4)
j=1

Jj=1

here 7771s the platform mass. These equations provide 6 additional constraints with-
reasing the number of unknowns. Hence we end up with 2rn 4 6 for 3n un-
knowns. As we assume a CDPR with n = 6 cables the IK amounts to solve a square
ystem of 18 equations in 18 unknowns, a problem that has been addressed in [14].
It has been shown that the system may have from 0 to multiple solutions. Hence
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a pose may not belong to the workspace simply because it has no IK solution or
because the IK equations are singular. We will not make any distinction between a
singular pose or a pose that has no IK solution as both forbid a pose to be part of the
workspace. We will denote by outside conditions all limiting conditions that always
include singularity and no IK solution while the other limiting conditions presented
in section 4.1 may or may not be taken into account.

5 Workspace calculation

As determining the workspace of CDPR is a complex issue we will simplify tl
problem by determining only 2D horizontal cross-sections of this workspace, as-
suming that both the altitude and the platform orientation are fixed.

A possible strategy to determine such a cross-section has been propose
This strategy first relies on the solving of the IK at a given pose )Q,

we are able to find a pose at which the IK has at least one solution. T. algit/en
IK solution §; at X it has been shown that it is possible to deter an h that
for all pose X such that ||X — Xy||. < € there is a single sol h€ IK such
that ||S — S;||. < €. Furthermore it was also shown that theggblutio a particular

X can be safely calculated with the Newton-Raphso
guess. With this result we can calculate a square su
workspace. The process is then repeated recursiv
square, while a pose is rejected if the € for thig,po 1 than a fixed threshold.
We thus get an approximation of the worksp st of boxes that are guaranteed
to be part of the workspace. Although this procedur€ is safe, trials have shown that
the maximal value of € was Verqna Fleading to a very large computation time for

using §; as initial

CDPR with large workspace.

5.1 Approximate b C lation

proach, called the approximate border calculation,
thg only the border of the workspace.

set of a pose X (called the heart of the o set) with coordinates (x,y)
poses whose coordinates (x,,y,) are defined as x, = x+kj &, y, =
t are part of the approximate border if:

e At least one pose of its ¢ set or the pose itself is in
at least one pose of its a set or the pose itself is out
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If these conditions are fulfilled, then the pose X will be called an o part of the border
to indicate that X and its & set are part of the approximate border. Our objective is
now to compute poses that are part of the approximate border. For that purpose we
assume that o is chosen small enough so that the Newton-Raphson (NR) scheme
used with as initial guess one the IK solution for X may be used to determine if

e the IK has no solution or is singular (NR does not converge)
e the pose is in or out if the NR converges

Under these conditions we may determine if a pose X and its & set are part of the
approximate border, provided that we have an IK solution for this pose. Note that
we associate to each pose of the ¢ set an IK solution except that for the singular one
we attach the IK solution of one of the in pose of the « set.

5.2 Propagation ®

Assume that we have determined a X and its o set that are part ea imate
border (AB). Our objective is now to find other poses that bel . For that
purpose we will consider each pose X of the o set of X andhdheck i is an (¢ part

of the border. Note that we have already checked the i atus of some of the
poses of the o set of Xj but this set includes new pog
be determined. As soon as a new ¢ part of the bofdd
repeated. In this way we propagate the approximatg border. All poses that are an
part of the border are stored, together with olution and in/out status. The
propagation algorithm also maintain a list .Z of pos¢s that have to be processed for

completing the propagation. This pro, tion stops when this list is empty.

5.3 Initialization

As mentioned in the pf
that is insi
that purpose
X;, of ¢

ection it is necessary to determine at least one pose
spaé&and has at least one pose in its o set that is out. For

me that that we have been able to determine one pose

in [14]. We then consider the pose of coordinates (x;, + k@, yin)

eger. We start with kK = 0 and increment k by 1 until the pose is
heme is used with the IK solution obtained for k — 1 as initial guess
tion for k). With this approach we will find k; such that the pose of
dinates (x;; + (k; — 1)ot,yin) is in and (x;, + k1@, yin) is out: we have hence
obtgined a starting point for the propagation. Note that k; may depend on the choice
of the IK solution for Xj,. Other starting poses for the propagation may be obtained
similarly by considering the poses (xi, — k&, Yin), (Xin, Yin + k), (Xin, yin — kot). All
these poses are stored in the list .Z of the propagation algorithm.
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After having obtained these starting poses we run the propagation algorithm for
computing the approximate border. This algorithm may raise some theoretical issues
but before mentioning them we will consider an example.

6 Examples

We consider as example our large scale robot MARIONET-CRANE [16]. This robot
is a suspended CDPR (i.e. there is no cable pulling the platform downward) with 6
cables, whose A;, B; coordinates are given in table 1. The cables characteristics are

Lx | v |z Il x| v |2z ] [x]ylellx]y]7]
325.0] 475 | 8826 ||942.1|-348.2]1155.5]  [-10]93]-3][ 10]93] 3]
953.8 | 379.7 [1153.3]|557.0 [2041.4| 8704 |  [27[50|-7]| 2740

350,5]1681.0] 864.9 || -334.2| 942.1 | 8788 [27]50]7 -27€

Table 1 Coordinates of the A; and B; points on the base and on the platf in cm\By’rows)

E = 100°N/m?, u = 0.079 kg/m and their diameter is 4mmWkhe maximal tension
in the cables is 13734N. We start by assuming that th or ass is 100 kg. We
assume that the center of mass of the platform is pf 200 cm and that the
platform orientation is such that the mobile frame'axis cide with the reference
frame axis. Our previous work have shown | se with coordinates (300,800)
has a single IK solution and we use it as the initializafion point. First we assume that
the only outside condition is the singy#arity for the NR scheme. Figure 1 shows the
approximate border in that case®

Fig. 1 Approximate border for m = 100 and a detailled view

It can be seen that an outside border has been determined but there are several
regions within the inside of the workspace. A detailed view is presented in figure 1
for x € [0,1.58](m), y € [10.4,13.4](m). It can be seen that the inside regions are
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of two different types: either in (for which the point on the border are in, in black
on the figure), labeled I on the drawing, or out (the pose on the border are singular,
in blue), labeled O. However there may be singular poses that are included in the
in region. For the poses on the border the maximal tensions are 237762, 94687,
588078, 643676, 481622 and 468928 N while the maximal L are 129613, 221416,
1517647,236185, 445492 and 1210157 meters.

If we assume now that the cable tensions cannot exceed 13734N we get the
workspace presented in figure 2. It may be seen that the approximate workspace
is reduced because of the tension constraint (pose that do not respect this constraint
are in black in the drawing). In that case the maximal Ly are 5959, 6331, 11817,
11613, 11815 and 11813 meters. Although these values are much less than in the
previous case, it may be seen that they are still very high and well over reasonab
values. If we impose now that the minimal height of the cable cannot be lower

18 1

16 ]
10

14 1

12

10

1.5 2 25 3 35

Fig. 2 On the left approximate border for m = 100 and T
border for m = 100 and 0 as minimal height fox the cables

\

din fi 2 where 3 of the 4 border components
straint (in red in the drawing) while one element is
ase the maximal tension in the cable are 592,
the maximal Ly are 13.96, 19.09, 19.25, 20.31,

734N and on the right approximate

0 we get the workspace prese
are obtained because of this
due to singularity (in blug
470, 377, 705, 669 and
17.90 and 13.59 meter

7 Con%

I is paper” we have shown that the exact determination of the border of the
work of CDPR with sagging cables is a complex issue even if only workspace
-sections are to be determined. We have proposed preliminary algorithms that
giv@’insights on the workspace but also raise several theoretical issues that need to
be furthermore considered. Other extension will be to consider cable interference
and the possibility of having more (or less) than 6 cables.
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