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Abstract. Computation of intersection of right truncated cylinders of revolution and stationary dis-
tances, including least and greatest, between conics and quadrics will be re-examined using clas-
sical geometry. Solutions are provided by formulating simultaneous polynomial constraint equa-
tions that represent 3D surfaces. Previous investigations in this regard claim that the work is useful
in preventing interference between rigid bodies in joint articulated mechanical systems. No such
claim is made herein. Indeed the intent was to have fun by indulging in elementary “geometric
thinking”.
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1 Introduction

A great deal has been written about this topic. Not long ago Agarwal, Srivatsan and
Bandyopadhyay [1] published the definitive article. There is little that I can add to
this and to the literature mentioned in its comprehensive bibliography. Rather I will
concentrate on some of the piecemeal sub-problems and expose some not-widely-
known, possibly novel, methodology.

• Since our cylinders kP,kQ are sectioned by axis-normal planes let us represent
a pair by their centreline end points A{1 : a1 : a2 : a2},B{1 : b1 : b2 : b3} and
C{1 : c1 : c2 : c3},D{1 : d1 : d2 : d3} and respective radii r,s.

• A key sub-problem is to find on the cylinder axes, lines P and Q, their common
normal end points P on AB and Q on CD. The closest distance between surfaces,
if lengths are indefinite, is simply |PQ|− r− s. Line geometry will be applied.

• To find if an end disc intersects another, these are represented, e.g., the one of
four on A, by sphere kA : (x1−a1)

2 +(x2−a2)
2 +(x3−a3)

2− r2 = 0 and plane
with coordinates a{A0 : b1−a1 : b2−a2 : b3−a3} 1. Contact or intrusion occurs
if the line of intersection between the two planes intersects both spheres on real
points.

1 A0 =−a1(b1−a1)−a2(b2−a2)−a3(b3−a3)
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• To find if an end disc intrudes into a cylinder flank, say, ka′′ = kA′′ ∩a′′, and that
of kQ′′ : x2

2 + x2
3− s2 = 0. (′′) indicates all three elements are displaced so C is on

the origin and D on the x1 axis. Then the four points X(x1,x2,x3) of intersection
of a′′∩ kA′′ ∩ kQ′′ , if real, are checked to see if 0≤ x1 ≤ |CD|.

• Finally a line geometric approach to finding the octic univariate that describes
stationary distances between a pair of spatial circles will be described. One of
these is the shortest. Distance criteria were used by Agarwal et al [1] to avoid col-
lision. My three sub-problem collision, as opposed to their four sub-problem dis-
tance, method seems simpler and sufficiently secure if actual cylindrical pieces
are buffered by increase in length and radius.

2 Common Normal Cylinder Centreline End Points

qp

P

Q
CN71P

Fig. 1 Common Normal R

Cylinder centrelines Pr,Qr are represented by their radial Plücker coordinates
directly computed with point pairs A,B and C,D.

Pr{p01 : p02 : p03 : p23 : p31 : p12}, Qr{q01 : q02 : q03 : q23 : q31 : q12}

Pencils p,q of planes normal to P,Q respectively are used to define axial line Ra.

p{P0 : p01 : p02 : p03}, q{Q0 : q01 : q02 : q03}

P0 and Q0 are the two unknowns necessary to find end points P and Q of common
normal axial line Ra on lines Pr and Qr using intersections

Ra{R01 : R02 : R03 : R23 : R31 : R12}, Pr·Ra = 0, Qr·Ra = 0

P = p∩Pr and Q = q∩Qr, e.g., pi = ∑
3
j=0 pi jPj thus, where Pj = p0 j.
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p0 = p01P1 +p02P2 +p03P3
p1 = −p01P0 +p12P2 −p31P3
p2 = −p02P0 +p12P1 +p23P3
p3 = −p03P0 +p31P1 −p12P2

(1)

If |PQ|− r− s ≤ 0 to establish collision we check that P is on either or between A
and B and that Q bears similar relation to C and D. This can be done, e.g., directly
with A0

2 and B0, the constant coefficients of equations of normal planes on A and
B, by verifying that A0 ≤ P0 ≤ B0 or A0 ≥ P0 ≥ B0.

3 Collision or Intersection of Cylinder Ends

To check if cylinder ends on points, say, A,C interfere we apply Eqs. 2.

a : A0 +A1x1 +A2x2 +A3x3 = 0
c : C0 +C1x1 +C2x2 +C3x3 = 0

kA : (x1−a1)
2 +(x2−a2)

2 +(x3−a3)
2− r2 = 0

kC : (x1− c1)
2 +(x2−ac)

2 +(x3− c3)
2− s2 = 0

(2)

Consider Fig. 2. Cylinder end discs will have a line segment, or at least a point, in
common if simultaneous solution of the first three of Eqs. 2 and the the first two and
the last both yield real X at P and Q. Note how descriptive geometry and judicious
choice of view pair provide clear visualization of the process.
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Fig. 2 Line on Cylinder End Planes Intersect both Spheres

2 In this case, as opposed to that mentioned in the introduction, A0 =−p01a1− p02a2− p03a3
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4 Collision or Intersection of a Cylinder Surface with an End

First the cylinder, radius s, with ends on C,D is displaced so C is on origin O and D
is along x1-axis, x1 > 0. Then the translation C→ O is imposed upon plane a and
centre A of sphere kA followed by the rotation necessary to make A→ B parallel to
x1-axis. So a,A,kA→ a′,A′,kA′ → a′′,A′′,kA′′ .

4.1 Translation

A→ A′ :


1 0 0 0
c1 1 0 0
c2 0 1 0
c3 0 0 1




1
a1
a2
a3

=


1

c1 +a1
c2 +a2
c3 +a3

=


1
a′1
a′2
a′3

 (3)

Although the translation of point A via Eq. 3 is obvious, plane coordinates, being of
dual species, are transformed by the cofactor of the translation matrix as in Eq. 4.

a→ a′ :


1 −c1 −c2 −c3
0 1 0 0
0 0 1 0
0 0 0 1




A0
A1
A2
A3

=


A0− c1A1− c2A2− c3A3

A1
A2
A3

=


A′0
A′1
A′2
A′3

 (4)

4.2 Normed Quaternion and Rotation Matrix

The normed quaternion v or rotation matrix [V] that rotates direction C → D as
required must premultiply A′,a′. A neat property of [V] is that it is identical to its
cofactor. v and [V] are introduced in Eq. 5.

v =


v0
v1
v2
v3

=


cos(φ/2)

cosα sin(φ/2)
cosβ sin(φ/2)
cosγ sin(φ/2)

 , [V] =


r00 0 0 0
0 r11 r12 r13
0 r21 r22 r23
0 r31 r32 r33



=


v2

0 + v2
1 + v2

3 + v2
3 0 0 0

0 v2
0 + v2

1− v2
2− v2

3 2(v1v2− v0v3) 2(v1v3 + v0v2)
0 2(v2v1 + v0v3) v2

0− v2
1 + v2

2− v2
3 2(v2v3− v0v1)

0 2(v3v1− v0v2) 2(v3v2 + v0v1) v2
0− v2

1− v2
2 + v2

3


(5)

Elements vi of a normed quaternion are also called Euler-Rodrigues parameters.
[cosα cosβ cosγ]> is the unit vector –expressed in terms of direction cosines– in
the direction of the rotation axis while φ is the rotation angle in a right-hand screw
sense. To get quaternion from rotation matrix –except for half-turns which I won’t
mention here– we use the diagonal elements rii to get v2

i as shown in Eq. 6.
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Intrusion, Proximity & Stationary Distance 5
r00 0 0 0
0 r11 r12 r13
0 r21 r22 r23
0 r31 r32 r33

→
v2

0 = (r00 + r11 + r22 + r33)/4
v2

1 = (r00 + r11− r22− r33)/4
v2

2 = (r00− r11 + r22− r33)/4
v2

3 = (r00− r11− r22 + r33)/4

(6)

4.3 Rotation

The rotation sought turns C′D′, C′ ≡ C′′ ≡ O, onto the x1-axis through rotation
through φ about O via unit vector n = [n1 n2 n3]

> into x = [1 0 0]>. The unit
vector ρ in the rotation axis direction is given by Eqs. 7.

n =

n1
n2
n3

= 1√
(d1−c1)2+(d2−c2)2+(d3−c3)2

d1− c1
d2− c2
d3− c3


ρ =

 cosα

cosβ

cosγ

= n×x
|n×x| =

n1
n2
n3

×
1

0
0

/|n×x|= 1√
n2

2+n2
3

 0
n3
−n2


(7)

To complete the computation of the quaternion elements cum Euler-Rodrigues pa-
rameters we need cos(φ/2) and sin(φ/2). Imagine vectors n and x placed tail-to-tail
on O, a line segment joining their tips, its mid-point M, the tip of vector m from O.
Consider that |m|= cos(φ/2) and |x−m|= sin(φ/2). All this is illustrated in Fig. 3.

cos
φ

2
=

1
2

√
(1+n1)2 +n2

2 +n2
3, sin

φ

2
=

1
2

√
(1−n1)2 +n2

2 +n2
3 (8)

As an exercise the reader may reformulate the problem of Eq. 9 as a∩ kA ∩ kQ by

n

u

m
M

cos
2

sin
2

Fig. 3 Rotation and Significance of Half-Angle Sine and Cosine

displacing k′′Q→ kQ instead of a→ a′′ and kA→ kA′′ .Author's
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4.4 Constraint Equations

The implicit equations of plane a′′, sphere kA′′ and the cylinder kQ′′ , to be solved
simultaneously to yield points X , appear in Eqs. 9.

a′′ : A′′0 +A′′1x1 +A′′2x2 +A′′3x3 = 0

kA′′ : (x1−a′′1)
2 +(x2−a′′2)

2 +(x3−a′′3)
2− r2 = 0

kQ′′ : x2
2 + x2

3− s2 = 0

(9)

Fig. 4 contains two views showing the plane a′′ in edge or line view at upper left and

k Q’’

X

XDSCY71N

A’’

A’’

a"

X

k A"

Fig. 4 Line on Cylinder End Planes Intersect both Spheres

the circle of cylinder kP′′ circular end disc together with the elliptical plane section
of cylinder kQ′′ The existence of real points X indicate encroachment of the surfaces.
If radius r is so small as to place the disc entirely within kQ′′ without triggering the
common normal length criterion this condition is checked via the distance between
disc centre point A and centre line Q on CD being less than radius s.

5 Stationary Distances between Spatial Circles

In the article [1] the shortest distance between two circles is made use of to account
for impending contact between cylinder end edges and an octic solution is referred
to. Although the approach introduced in § 3 handles this situation automatically it
is of interest to reveal how these distances can be computed using a line R that
intersects circle axis lines M and N on respective points M,N. R will be defined
by points P,Q on circles ka and kc, respectively, as shown in Fig. 5. Line R, shown
in Fig. 5, depicts a typical line belonging to two line congruences. One contains
all lines on points on circle ka and normal to the circle tangent at that point, P.
This property is ensured by the intersections P ∈ ka, P ∈R, M ∈R, M ∈M , i.e.,
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Fig. 5 Congruence of Normal Lines on Circles

∃M ∩R and ∃N ∩R. The other congruence on circle kc gives rise to similar rela-
tionships, viz., Q ∈ kc, Q ∈R, N ∈R, N ∈N . Dissecting these relations yields six
equations, Eqs. 10, in six Cartesian points coordinates, P(p1, p2, p3),Q(q1,q2,q3).

x 1

A

x 2

x 3

x 1

C

C

c

c{(-33/16):3/2:0:1/4}

C{1:3/2:0:-3/4}

{3/2:0:1/4:0:3/2:0}

{0:0:1:0:0:0}

A

k a

k c

(a) 4 Joining Lines on Plane of Axes

x 1

A

x 2

x 3

x 1

C

C

c

e{(-33/16):3/2:0:1/4}

M{1:3/2:0:-3/4}

{3/2:0:1/4:0:3/2:0}

{0:0:1:0:0:0}

A

k ak a

k ck a

(b) 4 Joinings Symmetric to Plane of Axes

Fig. 6 Eight Connections between Circles

Using Gröbner basis and an arbitrary pair of spatial circles these simultaneous
equations yield an octic univariate in one of the pi,qi and the basis provides a sys-
tematic way to compute the remaining five. I.e., each successive basis polynomial

Author's
 vers

ion



8 Paul Zsombor-Murray

contains one linear unknown in terms of those already evaluated. In general, there
are only four real stationary distances among the eight solutions. Are there circle
dispositions that admit eight real solutions? Again, geometric thinking and descrip-
tive geometry reveal in Fig. 6 eight connecting segments that satisfy Eqs. 10.

ka = kA∩a, P ∈ ka, kc = kC ∩ c, Q ∈ kc

A0 +A1 p1 +A2 p2 +A3 p3 = 0
(p1−a1)

2 +(p2−a2)
2 +(p3−a3)

2− r2 = 0

C0 +C1q1 +C2q2 +C3q3 = 0
(q1− c1)

2 +(q2− c2)
2 +(q3− c3)

2− s2 = 0

∃M = M ∩R, ∃N = N ∩R

m01R01 +m02R02 +m03R03 +m23R23 +m31R31 +m12R12 = 0
n01R01 +n02R02 +n03R03 +n23R23 +n31R31 +n12R12 = 0

Mr{A1 : A2 : A3 : a2A2−a3A2 : a3A1−a1A3 : a1A2−a2A1}
Nr{C1 : C2 : C3 : c2C2− c3C2 : c3C1− c1C3 : c1C2− c2C1}

Ra{p2q3− p3q2 : p3q1− p1q3 : p1q2− p2q1
: p0q1− p1q0 : p0q2− p2q0 : p0q3− p3q0}

(10)

6 Conclusions

Using implicit sphere, plane and cylinder equations, some geometric thinking and
descriptive geometry I’ve tried to unify the computational sub-problems pertinent
to collision and intrusion between two cylinders and use a consistent nomenclature
among them. Have any special cases been overlooked? Yes, a small end disc can
intrude into a large cylinder undetected. Do you see how to overcome this using
sphere centre A′′? Was this case covered in [1]? Apologies for my, in places, didactic
tone. Furthermore why should I cite more than one article? If it’s the right one,
clutter is undesirable.
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number the issue is then settled.
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