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Abstract. The paper presents an eight-bar linkage derived from a rotatable kaleido
ring of eight regular tetrahedra with revolute joint axes along common edges.
tion of the kinematics closure equation of the mechanism is proposed. Th
two-dimensional configuration space of this two-degree-of-freedom linkal
theory and the different modes of operation are described.
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1 Introduction

A kaleidocycle is a ring of an e\ er of tetrahedra hinged along common
edges skew in every body [6, 9] h eight"®T more tetrahedra, there is a continuous
twisting inward-outward moti the ring, displaying all the faces when the ring

n subject in recreational mathematics [2]. They
are also of ingerest cha theory [5, 8]. The equivalent linkage is a 2k-bar
hinged loop olute-joint axes in every link. For example, the kaleido-
cycle com ix regular tetrahedra can be thought of as a realization of the
threefold sy

Kinematics

The sketch of the Twofold-symmetric 8-bar linkage is shown in Fig. 1. It is com-
posed of eight equal links connected with eight revolute joints. These joint axes are
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Output link

Fig. 1 Twofold-symmetric 8-bar linkage

denoted by A, B, ..., H respectively. The axes of every two ad_]o i s dre per-
pendicular, A L B J_ Cl...1H1A Whenreferringtoa " , we will
usually mean the common normal line or segment betwee joining axes.

In the configuration in Fig. 1, the axes B, D, F, and

points Q1 and Q> are the intersections of A, C and specfively
The distance from O to link i is
b 021 .
2i = ly(iy1) = Ltan > (i=1.2,3) (D

Thus, \
by =14y =leg="l3 ; 03=05=07 ()

GH by a single rigid bo DF and FH, respectively. (I.e., we fix the
value of every second j iq e.)Then, the eight-bar can move as the spherical
four-bar linkage sho As its four link lengths are identical, measured by

the constant
m(ODH). Ehe
The jointS§alues

d Q» are reflections in the plane 7.
e eight-bar in this spherical-four-bar mode can be given as

91293295:9727'[—06

3)
0, =0c=7;0,=03=f

and 7y are variable (and only one is independent).

Fof a general spherical four-bar linkage, it can be located on a spherical surface,
shown in Fig. 3, where these links are denoted by the arcs of AB, BC, CD and DA.
xes of their joints are OA, OB, OC and OD, and they intersect into the center O of
the sphere. ;; is the central angle of the arc link and ¢; is the angular displacement
between two links.
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The mathematical mapping between the parameters of geometric link and the
angular displacements can be given as [7],

ci12(c34ca1 — ca534541) — s12(C1(C4ca1534 + €34541) — 5153454) —c23 =0 (4)

where
sij = sine;j, ¢;j = cos ;j, §; = sin@;, ¢; = cos ;

Fig. 3 Mode of spherical four- age

Because of symmetry, the geoNri i ameters and the revolute joints vari-
ables of the spherical four-bar linkage in ase satisfy the following conditions:

&)

jinBsiny— (cosB+1)(cosy+1)cosa) =0 (6)

t the initial configuration in Fig. 1 can be for a general value
iven o and B, Eq. (6) determines the value of . (Equation (6) is
and 7, so we can consider 3 to be the dependent variable.) We
two-dimensional set of configurations, obtained from the initial one by
and f3 (or a and 7).

3 Mobility and Bifurcation

The distance between points Q; and Q> in Fig. 2 can be derived as
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oy BB Y
w = 2Lsin ) (cot 5 cot E) ™
Letw =0, 1i.e., Q1 and Q; coincide and so the axes of A , C, E, and G intersect in

one point. Then,
B=0orf=y (®

Substituting § = 7 into Eq. (6), the closure equation can be rewritten as

sin® o(sin® y— cos &t (1 +cos 7)?) = 0 ©)
Therefore
a:Oorcosa:tanZ% 0
When Q; and Q» coincide, the instantaneous mobility of the 8—&1r in \Q
creases. Indeed, since each of the eight hinge axes passes through one pomts,
the rank of the screw system spanned by all zero-pitch joint screwS§ 1S at mo$€ five.

Therefore the mobility of the loop is at least three, violating t! enfional mo-
bility formula for an 8-bar.

3.1 General configuration @

We use a global reference frame OXYZ (fixed in space but not in any of the rigid
links) with the symmetry planes &; and’7,, chosen as OYZ and OXZ, respectively.
In the figure, the OX and OY axe& nfand to the right.

The screw coordinates of H a , exptgs€ed in the global frame, are

- 09 nl ’ 07 09 O)T

(11)
(0, ma, 2, 0,0,0)"

We denote b
axes are pegpe
(11), sg =

tor directed as the axis of the i-joint screw S;. As adjoining
A is normal to axes B and H and so s; = s, X sg. From
d sy = [0, my, np]T. Hence,

S1 = (many, mina, —myma, —kp, kq, kr)" (12)

where
2. 2 2, 2 2 2
mi(m5+n5+nina), q=my(mi+ni+nny), r=miny—msn
l

k=
\/m%—l—m%—i—(nl +ny)?

and / is the distance from O to axis A.
The coordinates of the eight joint screws can now be written as follows,
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S1 = (mpny, myny, —mymy, —kp, kq, kr)T
S S» = (0, my, np, 0, 0, 0)
!
: S3 = (—many, miny, —myma, —kp, —kq, —kr)"
S my,0,n1,0,0,0
4= (—m 1 )T ; (13)
S5 = (—many, —miny, —mymo, kp, —kq, kr)
Se = (0, —mp, ny, 0,0, 0)
Sp
S7 = (mony, —miny, —myma, kp, kg, —kr)®
Sg = (m1, 0,11,0,0,0)"

To analyze the mobility of the linkage we consider it as a parallel mechanisig
two leg chains composed of joints, 1 to 4 and 5 to 8, respectively, and.we fo

methodology described in [3]. The motion systems of this parallel meghan' --
generated by the screws in (13), while the constraint systems are spanife
k k
=0 - 00,0 %
r mony’ maony’
klzmznl klzmlnz ki
12 - (.X Ys 2 @
k
Sp=(0, 10 Ko

(14)
lr2 m2n1 nony
ng _ (x’ k12m2n1 2 k12m1m2
where \
kmy (k—l ni +I’l2) —bny
X L’ y y < I 3 2

and L is the length of lin
This shows that dim (¢
calculated fr ili

3.2 Si x-ﬁgurations

When t tance |Q 02| equals to zero (Q; = Q5 as shown in Fig. 4), a spanning
straint screws of the 8-bar linkage can be derived as
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kq
" =1(0,0, ——,0,0,0)T
1= - )

roo_
i k12m2n1 klzmlnz klzm1m2

Sh=(xy 2 , : )"
. L L L (15)
5, = (0,0, —L_0,0,0)"
Sph = i
klzmznl klzmlnz k12m1m2
Sy =(x —yz - )"

L > L ° L

Obviously, dim(S") = 3, card(S") = 4. So in this configuration, the mobility of
linkage, calculated as in [3],ism =8 —6+4—3 =3.

.\Q

illustrates the geometric nature of the bifurcation and the different modes of
otion. There are two sheets (two-dimensional regions) of the configuration space
here no links or joints coincide. In the first region, exemplified by Fig. 5(a), the
axes of the revolute joints A, C, E and G intersect in one point. On the second sheet,
Fig. 5(c), B, D, F and H are concurrent instead. On both sheets, the linkage has
mobility two and two planes of symmetry. In the singular configuration, Fig. 5(b),
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(a) Branch 1 (b) Singular configuration A (c) Branch 2

Fig. 5 Geometry of the bifurcation Q

the axes of two pairs of revolute joints intersect in one point simulggneou
mobility of the 8-bar linkage changes to three with four symmetry plamx

(a) Case 1: =0 \ (b) Case2: ¢ =0

Fig. 6 Two configyrdftdns with er instantaneous mobility

From Eqs. (8) and (1
the first, Fig. 6(a), the a

ar€ two other special cases: § =0 and ¢ = 0. In
volute joints A, H and G are collinear with C, D

sm is four and the 8-bar linkage enters a 3-DOF region
serial chain. In the second case, Fig. 6(b), the axes B, D,

, a general motion of the 3R serial chain reduces instantaneous mo-
. While in some special cases, the mobility can stay the same if some
is met. In Fig. 6(a), all the links should be coplanar and B, D(H), F inter-
ect i one point. In Fig. 6(b), there should be two perpendicular symmetric planes.
these cases, the mobility is always four and there exists a motion to come back to
e non-overlapping configuration.

In both cases configurations with higher instantaneous mobility can be obtained
when more axes become coincident. And these cases can be reproduced after any
cyclic permutation of A, B, ..., H. These multiple regions have intersections in con-
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figurations where even more revolute joints become coincident. The detailed analy-
sis of the topology of the configuration space is rather complex and is omitted here
due to lack of space. Moreover, in many of these cases the two-fold symmetry is not
maintained. We should note, however, that although these configurations like the
ones in Fig. 6 appear exotic, they constitute “most” of the points in the configura-
tion space, as they form regions with dimensions higher than the “normal” 2-DOF
operation modes.

4 Conclusions

This paper presents a two-fold symmetric 8-bar linkage evolved from a kaleig
with 8 equilateral tetrahedra. As there are four axes intersecting in Ofie poi
time, the 8-bar linkage is treated as an equivalent spherical four-bar :
closure equation is then obtained easily using methods of spheri ur- nal-

ysis. Screw-system-based analysis identifies the singular confi i d'reveals
the bifurcation process. As the 8-bar linkage moves from on ion e configu-

ration space to another, the four intersecting axes of revo ill switch.
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