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Abstract. The paper presents an eight-bar linkage derived from a rotatable kaleidocycle, a hinged
ring of eight regular tetrahedra with revolute joint axes along common edges. A simplified deriva-
tion of the kinematics closure equation of the mechanism is proposed. The bifurcations of the
two-dimensional configuration space of this two-degree-of-freedom linkage is analyzed by screw
theory and the different modes of operation are described.
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1 Introduction

A kaleidocycle is a ring of an even number of tetrahedra hinged along common
edges skew in every body [6, 9]. With eight or more tetrahedra, there is a continuous
twisting inward-outward motion of the ring, displaying all the faces when the ring
is viewed along its axis [4].

Kaleidocycles have been a known subject in recreational mathematics [2]. They
are also of interest to mechanism theory [5, 8]. The equivalent linkage is a 2k-bar
hinged loop with skew revolute-joint axes in every link. For example, the kaleido-
cycle composed of six regular tetrahedra can be thought of as a realization of the
threefold-symmetric Bricard linkage [1].

In this paper, we study a twofold-symmetric eight-bar linkage derived from the
kaleidocycle consisting of eight regular tetrahedra. In Section 2, the closure equation
of the eight-bar linkage is derived in a new and simplified way. The mobility and
bifurcations [10] are analyzed in Section 3. The article concludes with Section 4.

2 Kinematics

The sketch of the Twofold-symmetric 8-bar linkage is shown in Fig. 1. It is com-
posed of eight equal links connected with eight revolute joints. These joint axes are
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Fig. 1 Twofold-symmetric 8-bar linkage Fig. 2 Equivalent spherical four-bar linkage

denoted by A,B, . . . ,H respectively. The axes of every two adjoining hinges are per-
pendicular, A⊥ B⊥C ⊥ . . .⊥ H ⊥ A. When referring to a “link”, e.g., AB, we will
usually mean the common normal line or segment between two adjoining axes.

In the configuration in Fig. 1, the axes B, D, F , and H intersect at point O, while
points Q1 and Q2 are the intersections of A, C and E, G, respectively.

The distance from O to link i is

l2i = l2(i+1) = L tan
θ2i+1

2
(i = 1,2,3) (1)

Thus,
l2 = l4 = l6 = l8 ; θ 1 = θ 3 = θ 5 = θ 7 (2)

Suppose we now replace each link pair HA−AB, BC−CD, DE−EF , and FG−
GH by a single rigid body, HB, BD, DF and FH, respectively. (I.e., we fix the
value of every second joint angle.) Then, the eight-bar can move as the spherical
four-bar linkage shown in Fig. 2. As its four link lengths are identical, measured by
the constant angle α , there are two perpendicular planes of symmetry π1(OBF) and
π2(ODH). The points Q1 and Q2 are reflections in the plane π2.

The joints values of the eight-bar in this spherical-four-bar mode can be given as

θ 1 = θ 3 = θ 5 = θ 7 = π−α

θ 2 = θ 6 = γ ; θ 4 = θ 8 = β
(3)

where β and γ are variable (and only one is independent).
For a general spherical four-bar linkage, it can be located on a spherical surface,

as shown in Fig. 3, where these links are denoted by the arcs of AB, BC, CD and DA.
Axes of their joints are OA, OB, OC and OD, and they intersect into the center O of
the sphere. αi j is the central angle of the arc link and φi is the angular displacement
between two links.

Author's
 vers

ion



Kinematics and Bifurcation of a Twofold-Symmetric Eight-bar Linkage 3

The mathematical mapping between the parameters of geometric link and the
angular displacements can be given as [7],

c12(c34c41− c4s34s41)− s12(c1(c4c41s34 + c34s41)− s1s34s4)− c23 = 0 (4)

where
si j = sinα i j, ci j = cosα i j, si = sinφ i, ci = cosφ i

Fig. 3 Mode of spherical four-bar linkage

Because of symmetry, the geometric link parameters and the revolute joints vari-
ables of the spherical four-bar linkage in our case satisfy the following conditions:

α41 = α12 = α23 = α34 = α

φ 1 = φ 3 = β ; φ 2 = φ 4 = γ
(5)

Substituting Eq. (5) into Eq. (4), the closure equation of the 8-bar linkage can be
written as

sin2
α(sinβ sinγ− (cosβ +1)(cosγ +1)cosα) = 0 (6)

We now note that the initial configuration in Fig. 1 can be for a general value
of α . For any given α and β , Eq. (6) determines the value of γ . (Equation (6) is
symmetric in β and γ , so we can consider β to be the dependent variable.) We
thus obtain a two-dimensional set of configurations, obtained from the initial one by
varying α and β (or α and γ).

3 Mobility and Bifurcation

The distance between points Q1 and Q2 in Fig. 2 can be derived as
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w = 2Lsin
β

2
(cot

β

2
− cot

γ

2
) (7)

Let w = 0, i.e., Q1 and Q2 coincide and so the axes of A , C, E, and G intersect in
one point. Then,

β = 0 or β = γ (8)

Substituting β = γ into Eq. (6), the closure equation can be rewritten as

sin2
α(sin2

γ− cosα(1+ cosγ)2) = 0 (9)

Therefore

α = 0 or cosα = tan2 γ

2
(10)

When Q1 and Q2 coincide, the instantaneous mobility of the 8-bar linkage in-
creases. Indeed, since each of the eight hinge axes passes through one of two points,
the rank of the screw system spanned by all zero-pitch joint screws is at most five.
Therefore the mobility of the loop is at least three, violating the conventional mo-
bility formula for an 8-bar.

3.1 General configuration

We use a global reference frame OXY Z (fixed in space but not in any of the rigid
links) with the symmetry planes π1 and π2, chosen as OY Z and OXZ, respectively.
In the figure, the OX and OY axes point down and to the right.

The screw coordinates of H and B, expressed in the global frame, are

S8 = (m1, 0, n1, 0, 0, 0)T

S2 = (0, m2, n2, 0, 0, 0)T (11)

We denote by si a unit vector directed as the axis of the i-joint screw Si. As adjoining
axes are perpendicular, axis A is normal to axes B and H and so s1 = s2× s8. From
(11), s8 = [m1, 0, n1]

T and s2 = [0, m2, n2]
T. Hence,

S1 = (m2n1, m1n2, −m1m2, − kp, kq, kr)T (12)

where

p = m1(m2
2 +n2

2 +n1n2), q = m2(m2
1 +n2

1 +n1n2), r = m2
1n2−m2

2n1

k =
l√

m2
1 +m2

2 +(n1 +n2)2

and l is the distance from O to axis A.
The coordinates of the eight joint screws can now be written as follows,
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Sl1


S1 = (m2n1, m1n2, −m1m2, − kp, kq, kr)T

S2 = (0, m2, n2, 0, 0, 0)T

S3 = (−m2n1, m1n2, −m1m2, − kp, − kq, − kr)T

S4 = (−m1, 0, n1, 0, 0, 0)T

Sl2


S5 = (−m2n1, −m1n2, −m1m2, kp, − kq, kr)T

S6 = (0, −m2, n2, 0, 0, 0)T

S7 = (m2n1, −m1n2, −m1m2, kp, kq, − kr)T

S8 = (m1, 0, n1, 0, 0, 0)T

(13)

To analyze the mobility of the linkage we consider it as a parallel mechanism with
two leg chains composed of joints, 1 to 4 and 5 to 8, respectively, and we follow the
methodology described in [3]. The motion systems of this parallel mechanism are
generated by the screws in (13), while the constraint systems are spanned by

Sr
l1


Sr

11 = (0, − kr
m2n1

,
kq

m2n1
, 0, 0, 0)T

Sr
12 = (x, y, z,

kl2m2n1

L
,

kl2m1n2

L
,

kl2m1m2

L
)T

Sr
l2


Sr

21 = (0,
kr

m2n1
,

kq
m2n1

, 0, 0, 0)T

Sr
22 = (x, − y, z, − kl2m2n1

L
,

kl2m1n2

L
,

kl2m1m2

L
)T

(14)

where

x =−km1

L
, y =− (k− l2)m2

L
, z =

k(n1 +n2)− l2n2

L
, l2 =

√
l2−L2

and L is the length of link AB.
This shows that dim(Sr) = card〈Sr〉 = 4. So the mobility of the 8-bar linkage

calculated from the mobility criterion in [3] is m = 8−6+4−4 = 2.

3.2 Singular configurations

When the distance |Q1Q2| equals to zero (Q1 = Q2 as shown in Fig. 4), a spanning
set of constraint screws of the 8-bar linkage can be derived asAuthor's

 vers
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Sr
l1 =


Sr

11 = (0, 0,
kq

m2n1
, 0, 0, 0)T

Sr
12 = (x, y, z,

kl2m2n1

L
,

kl2m1n2

L
,

kl2m1m2

L
)T

Sr
l2 =


Sr

21 = (0, 0,
kq

m2n1
, 0, 0, 0)T

Sr
22 = (x, − y, z, − kl2m2n1

L
,

kl2m1n2

L
,

kl2m1m2

L
)T

(15)

Obviously, dim(Sr) = 3, card〈Sr〉 = 4. So in this configuration, the mobility of
linkage, calculated as in [3], is m = 8−6+4−3 = 3.

Fig. 4 8-bar linkage in a singular configuration

3.3 Discussion

Figure 5 illustrates the geometric nature of the bifurcation and the different modes of
motion. There are two sheets (two-dimensional regions) of the configuration space
where no links or joints coincide. In the first region, exemplified by Fig. 5(a), the
axes of the revolute joints A, C, E and G intersect in one point. On the second sheet,
Fig. 5(c), B, D, F and H are concurrent instead. On both sheets, the linkage has
mobility two and two planes of symmetry. In the singular configuration, Fig. 5(b),
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(a) Branch 1 (b) Singular configuration A (c) Branch 2

Fig. 5 Geometry of the bifurcation

the axes of two pairs of revolute joints intersect in one point simultaneously. The
mobility of the 8-bar linkage changes to three with four symmetry planes.

(a) Case 1: β = 0 (b) Case 2: α = 0

Fig. 6 Two configurations with higher instantaneous mobility

From Eqs. (8) and (10), there are two other special cases: β = 0 and α = 0. In
the first, Fig. 6(a), the axes of revolute joints A, H and G are collinear with C, D
and E, respectively, while B, D, F and H intersect in one point. In this configuration
the mobility of the mechanism is four and the 8-bar linkage enters a 3-DOF region
where it operates as a 3R serial chain. In the second case, Fig. 6(b), the axes B, D,
F and H coincide. Also here the mechanism can now move as a 3R serial chain, but
with coincident hinge axes.

In both cases, a general motion of the 3R serial chain reduces instantaneous mo-
bility to three. While in some special cases, the mobility can stay the same if some
condition is met. In Fig. 6(a), all the links should be coplanar and B, D(H), F inter-
sect in one point. In Fig. 6(b), there should be two perpendicular symmetric planes.
In these cases, the mobility is always four and there exists a motion to come back to
the non-overlapping configuration.

In both cases configurations with higher instantaneous mobility can be obtained
when more axes become coincident. And these cases can be reproduced after any
cyclic permutation of A,B, . . . ,H. These multiple regions have intersections in con-
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figurations where even more revolute joints become coincident. The detailed analy-
sis of the topology of the configuration space is rather complex and is omitted here
due to lack of space. Moreover, in many of these cases the two-fold symmetry is not
maintained. We should note, however, that although these configurations like the
ones in Fig. 6 appear exotic, they constitute “most” of the points in the configura-
tion space, as they form regions with dimensions higher than the ”normal” 2-DOF
operation modes.

4 Conclusions

This paper presents a two-fold symmetric 8-bar linkage evolved from a kaleidocycle
with 8 equilateral tetrahedra. As there are four axes intersecting in one point at all
time, the 8-bar linkage is treated as an equivalent spherical four-bar linkage. The
closure equation is then obtained easily using methods of spherical four-bar anal-
ysis. Screw-system-based analysis identifies the singular configuration and reveals
the bifurcation process. As the 8-bar linkage moves from one region of the configu-
ration space to another, the four intersecting axes of revolute joints will switch.
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