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Abstract. Most of existing works on the optimal design of balanced four-bar linkages deal essen-
tially with the minimization of their inertia or input torques under balancing constraints. Thes
approaches are not suitable to include constraints based on the elastic behavior of the mechanis
In order to solve this issue, we propose in this paper to perform the topology optimization ofg -
tionless four-bar linkage. Conditions for balancing the mechanism are first recalled and a

ing the

optimization algorithm is run in order to maximize the first natural frequency wHile ens
balancing and constraining the mechanism compliance. We show that in order to in a

esting design solution, it is necessary to modify the balancing constraints in ord penalige them.
Interesting design solutions are obtained in a rather short computational time,
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1 Introduction @

Transmitting no reactions to the ground is ver ling in many applications such
that space robotics or high-speed manipulation [10]"However, complete shaking

force and shaking moment balancing igMsually obtained by using both counter-
weights and counter-rotations, thNea i n increase in the design complexity

and to noise and backlash issues
In order to avoid the drawba
linkage without them was propo

e'to theg use of gears [10].
1n using counter-rotations, a reactionless four-bar
in [12]. For obtaining this property, conditions

on both the geometry and stribution of the linkage must be respected. It
was later shown in [9] t eactionless linkage can be used as an elementary
block in ord less robots

In [10], the yen of the reactionless four-bar linkage was carried out
for minimi its
work, the s of links and counterweights is fixed and the authors focus on
os1i@ning of the counterweights. Other works deal with the optimal
d four-bar linkages for allowing the full [8] or partial [5,7] dynamic

lete list of reference can be found in [1].

main issue with the aforementioned methods comes from the fact that the
shape of the links is already fixed (the design variables are their dimension) and
formation or vibration constraints may lead to an unfeasible design in practice
(bulky mechanism to resist to the external efforts while ensuring the balancing con-
ditions). For avoiding this issue, it is necessary to optimize the shape of the links.
This was done in [5] for the partial balancing of the four-bar linkage, however the
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Fig. 1 A general four-bar linkage. [ )

approach proposed allows for finding only the external shape of the li
can be included, which is not optimal w.r.t. the minimization of thefli
while ensuring the decrease of the link mass.

Performing a Topology Optimization (TO) of the lin
sue [15]. This technique aims at optimizing the materja1gi ion in a link in
order to satisfy performance criteria including deformat or vjbfration constraints.

Our contribution in the present paper is to per: of the reactionless
four-bar linkage for ensuring its full balancing génditipns while constraining elastic
performance criteria. To the best of our knowle is is the first time that the
TO of a fully force and moment balancgd mechanism is performed. Furthermore,
we show that balancing constraifits myst artially penalized in order to obtain
meaningful designs.

2 Problem formulation

The general scheme of th¢
* body 4, is the body B
joints at

ar Jinkage is given in Fig. 1(a). In what follows,
joints at O and O,, body %, is the body between
%5 is the body between joints at Oz and O,

O, and O,, ¢, is the distance between O, and 0'2 and
een O3 and 0’2, {4 is the distance between O and O3,

the center of mass, m; is its mass, zz; is the moment of inertia
i, mx; (my;, resp.) is the static moment around x; (y;, resp.), i.e

My / OiM;; dm = m;r; Cf)S Vi . (D)
myi| = sin

.1 Shaking force and shaking moment balancing conditions

The conditions given in [12] for achieving the full shaking force and shaking mo-
ment balancing of the four-bar linkage without counter-rotations involve both con-
traints on the mechanism geometry and mass distribution. Three different set of
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links lengths are possible: Set 1: /; = ¢3 and /5 = {4; Set 2: | = ¢ and {3 = {4; Set
3: f] = 54 and 62 = 53.

In what follows, we focus only on mechanisms designed with the first set of
geometric constraints, which is the set most often studied in the papers (see for
instance [9, 10]) and corresponds to the anti-parallelogram linkage. In this case,
the conditions on the mass distribution given in [12] for the full balancing can be
rewritten as:

my; =0 and my, =0 and my3 =0 ?)

mx1/€1+m2—mxz/€2:0 and mx3/€3—|—mx2/€2 =0

3)
221 —mx1 €1 +z2z0 —mxaly =0 and zz3 —mxzl3 +zz0 —mxaly =0 (Q
2.2 Modeling of the linkage elastic behavior Py Q
Topology optimization uses the same physical model as in the finite elegi@nt
for modeling bodies and linkages: each body is meshed using finige®slem The
presence or absence of an element ij (i.e. the element j of the rame-
terized with a material density variable p;; which can take valu€s betyeeal 0 (which
represents the absence of material) and 1 (which representS th@presence of mate-
rial).

Based on these density variables, we use an i
define an artificial material. This method is calle
Penalization (SIMP, [2]) and is known to be t] t kffective and the most widely
used material interpolation scheme. This interpolation Scheme is adopted in order to
avoid having optimization results with much intermediate material density, i.e.
in order to have a final design solttion W sities only equal to p;; =1 or p;; =0
without too many intermediate values (0 /i < 1) that are difficult to manage by
the designer.

The SIMP scheme is used
the stiffness matrix of thef®

cheme in order to
So otropic Material with

to meterize the Young’s modulus associated with
t i pand it is defined as follows:

p£ (Eo — Emin), with p;; € [0,1] ®)

where Ej i dulus of the material, E;, is a very small stiffness value
assigned to reg1OMS in order to prevent the stiffness matrix from becoming sin-
gular, p i = 3) is the penalization factor, and E;; is the Young’s modulus
e body i corresponding to the density variable p;;.

on this definition of the Young’s modulus for the element ij, we
ness matrix. Finally, once all elementary matrices are defined, the com-
of the body and linkage stiffness matrices is the same as in the traditional
methodology [13].

The computation of the body and linkage mass matrices (necessary for the com-
putation of the elastodynamic performance) is also based on the use of elementary
mass matrices M;; equal to

M;; = piMj; (6)
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where M?j is the mass matrix of the element ij computed for a density p;; = 1.
Once the linkage stiffness and mass matrices are obtained, the elastic perfor-
mance of the mechanism can be defined, such that the deformations or natural fre-
quencies [13].
It should be mentioned that, in order to decrease the time for computing the
elastic performance of the linkage, a Craig-Bampton model reduction technique [6]
is applied on each body independently, as done in [4].

2.3 Optimization problem

The general formulation of a mono-objective TO problem is given by:

mpinf(P) subject to p € [0, 1]", g(p) <0, h(p) =0,
where L

* p is the decision variable vector containing all element densities g;;,
* f, g and h are functions of g characterizing performance indice s@licture

constraints.

Several optimization algorithms can be used, among which cite the Optimal-
ity Criteria method [17], the Method of Moving Asymg [16]§6r the Lineariza-

symbolic computation of the functions and the
Here, we decided to maximize the first natural frequency for the linkage under

the following constraints:

* the balancing equalities (2) ton pected. As shown in [4], the inertial
parameters used in these equalities linear with respect to the decision
variables in p.

* the compliance (i.e. twice
of the nodal wrencheg
threshold under a give

tial elastic energy or also the dot product
naodal displacements) must be lower than a given
g (as often done in TO, see for instance [15]).

For computi compliance and natural frequency, we consider that the body
A is actu in'@y and“that the computation of these performances is made for
61 =m/2( ().

3 Topolo8y optimization

.1 Inttigl domain

al design domain for the proximal and distal links is represented in Figs. 2(a),
2(c) and 2(e). Four-bar geometric parameters are taken at {; = {3 = 60 mm and
= {4, = 200 mm. Each link has got two holes (voids) in which the joints
will be inserted. Bodies & and %3 external shapes are rectangles of dimension
(150 x 40) mm and thickness of 10 mm, while body %, external shape is a rect-
angle of size (220 x 20) mm and thickness of 1 mm. For the meshing of the links,
QUAA4 finite elements (i.e. four-nodes rectangular planar elements) of size 1 x 1 mm.
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Elements associated with p, | Elements associated with p,

(a) Initial design domain for body %,

(c) Initial design domain for body %, (d) First version of optimal design for bod
B>

Elements associated with p, | Elements associated with p,

(e) Initial design domain for body %5 (f) First version of 0]
)

al design for body

Fig. 2 Initial design domain and first temptative optimal
correspond to p;; = 1, white elements to p;; = 0, and gr;

bodies (black elements
nts to 0 < p;; < 1)

Links are considered to be made of steel with Young’s modulus Ey = 210 GPa, Pois-
son’s ratio v = 0.3 and density o§780 As a result, 6000 elements are used
for meshing the bodies %, and whtle the)body %, is made of 4400 elements
(Figs. 2(a), 2(c) and 2(e)).

3.2 Optimization res

We run the TO algorith %
1073 Nm fo
e at Oy: a forc

fixed threshold for the compliance value of 1.6 -

ed9¥ifkage under the following loading:

ong x, a force of 15 N along y,, a moment of 2 Nm
around bo 1, a moment of 1 Nm around zy on body %>,

e at 0/2: a forge o N along xg, a force of 15 N along y,, a moment of 2 Nm

on y %3, a moment of 1 Nm around zy on body %>,

ent of 2 Nm around zg on body %5.

of its neighborhoods as was proposed in [3].

All functions have been encoded with Matlab in the Windows 7 environment.
e LM optimization algorithm is available under request to the second author.
The optimization process is run and we considered that the algorithm converged
when the maximal change between two sequential iterations for any component of
the density vector g is lower than 0.01. First results of optimization are shown in
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Js Y3

3

o
(e) Optimal design of body %5: case 1 (f) Optimal design of body cas
Fig. 3 Optimal design of bodies %), %, and % in two cases; case 1: the initfial dgmain of

body % is the one depicted in Fig. 2; case 2: the initial design domain off > isis changed:
the body’s height is now of 30 mm instead of 20 mm as in case 1 (bl leme: orrespond to

pij = 1, white elements to p;; = 0, and gray elements to 0 < p;; <

Figs. 2(b), 2(d) and 2(f). The algorithm stopped afir itegations, with a maxi-
mal constraint violation of 5- 1073 %!. In totaligy, thg optimization procedure took
28 minutes with a Pentium 4 2.70 GHz, 16 M. However, the algorithm
had difficulty to converge (large oscillations in the value of the objective function,
not displayed for reasons of pagelimitafiorig) and finally attained a first natural fre-
quency of 67 Hz (which is quite& a shown below).

Obtained results showed that @, the le nd area of the points O; and O3z, the
material density for bodies Z#@nd s is between 0 and 1 (gray elements), thus
leading to bodies which ase to design by engineers [14]. We increased
the number of allowed o terations and obtained no improvement: These
portions of materials_are here to fulfill the balancing constraints and have
less impact ianCt constraint or the frequency of the full linkage.

We propose h o improve this solution which is based on a partial pe-
nalization ofj¢he bal@meing constraint equations. As said in Sect. 2.3, the equality
constrai ), d (4) are linear, i.e they can be written under the form:

Ap=Ap,+Ap, =0 (®)

ontains the decision variables associated with the elements on the left-
ide of the gray lines in Figs. 2(a) and 2(e) for bodies #; and %3 while g,
ntafts all other variables, including those of the body . Thus, the vector g,; con-
tains the variables associated with the portions of materials which are almost here
fulfill the balancing constraints, which have few impacts on the linkage elastic
performance, and which takes intermediary values for density.

! Constraints are normalized using their values computed for the initial design, except for Eq. (2)
whose initial values are null.
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In order to force the values of the variables in g, to be only 0 or 1, we modify the
balancing equality (8) by raising the variables g, at the power of g as follows:

Ap!+A0,=0 ©)

In our code, we put g = 2 or 3. To the best of our knowledge, this is the first time
that penalization method is applied in order to achieve balancing constraints. Based
on this new formulation, condition (9) does well represent the balancing equality (8)
if all elements in p; are equal to 0 or 1. Thanks to this penalization of the variables
©;> a small removal of material has a considerable impact on the balancing of the
system, thus forcing the algorithm to impose O or 1 values to the variables g, i
order to counterbalance the effect of the variables g,. The optimization results
taking into account the constraints (9) instead of (8) are shown in Figs. 3(

and 3(e) (results obtained in 20 minutes, objective: first natural frequeficy of
constraint violation of 1.4-107* %). Results were obtained without anglinsta f
of the optimization algorithm and it can be observed that gray elepa@ats een

removed from the design solution.

Figures. 3(b), 3(d) and 3(f) show the same optimization em bugthe differ-
ence comes from a change in the initial domain for body %, Which was increased
(body’s height is now of 30 mm instead of 20 mm). Fi jectiy€ was of 763 Hz
and was attained in around 10 hours. It can be obse; at ajlight change in the

design domain may lead to a totally different desigh'$olu

3.3 Discussion

This work was made in order to s% t TQyean be used in order to obtain solutions
in a rather short time of a complical 2n problem which was to balance a four-
bar linkage while ensuring deforif#étion, c liance or frequency constraints.
However, in this paper, so sues have not been solved, which should be in-
vestigated later. First, the g is performed for compliance and frequency
computed at 6y = /2. fi r optimization will be local by default. A more
global optimization ghsuring the performance for any linkage configu-
ration could
could be enxis bjective and constraints could be changed.
It shoul fina
gence ofhe al8@githm is considerably sensitive by the threshold on the inequality
constgaints A case all constraints are not achievable (i.e. there is no solution to the

ost of existing works on the optimal design of balanced four-bar linkages deal
ssentially with the minimization of their inertia or input torques under balancing
constraints. These approaches are not suitable to include constraints based on the
elastic behavior of the mechanism. In order to solve this issue, we performed in this
paper the topology optimization of a reactionless four-bar linkage.
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In our paper, a topology optimization algorithm was run in order to maximize the
first natural frequency while ensuring the balancing and constraining the mechanism
compliance. We showed that in order to obtain an interesting design solution, it was
necessary to modify the balancing constraints in order to penalize them. Interesting
design solutions were obtained in a rather short computational time.

Future works include solving the problem in 3-D and also carrying out multi-
material topology optimization in order to ensure the balancing conditions by par-
tially using materials with higher density leading thus to smaller mechanism foot-
print. The design of a prototype is also envisaged.
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