
1 

Robust Optimization of the RAF parallel robot 

for a prescribed workspace 

M. A. Laribi1, A. Mlika2, L. Romdhane2,3 and S. Zeghloul1  

1 Dept. of GMSC, Pprime Institute, CNRS - University of Poitiers - ENSMA - UPR 

3346, France, e-mail: med.amine.laribi@univ-poitiers.fr said.zegloul@univ-

poitiers.fr  

2 Mechanical Laboratory of Sousse (LMS), National Engineering School of 

Sousse, University of Sousse, Sousse 4000, Tunisia, e-mail: 

abdelfattah.mlika@gmail.com  lotfi.romdhane@gmail.com   

3Mechanical Engineering Department, American University of Sharjah, PO Box 

26666, Sharjah, United Arab Emirates, e-mail: lromdhane@aus.edu  

Abstract. This paper deals with the optimal synthesis of the RAF robot for a prescribed workspace. The 

RAF (Romdhane-Affi-Fayet) robot is a three translational parallel manipulator (3TPM). A method based 

on the genetic algorithm is used to solve the optimization problem. A multi-objective function, based on 

the mathematical concept of the power of a point with respect to a surface, is formulated. The suggested 

method is simple and effective in defining the geometry of the robot having the smallest workspace that 

includes a specified volume and the best kinematic performance.  
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1 Introduction 

The interest in parallel manipulators (PM) arises from the fact that they exhibit high 

stiffness in nearly all configurations and a high dynamic performance. The RAF 

(Romdhane-Affi-Fayet) parallel manipulator is also a 3TPM and it consists of a 

mobile platform connected to the base by three active legs and two passive kine-

matics’ chains [1, 2, 3].  

The design problem has been addressed in many previous works [6,11,12,13,14 

16,17,18,19]. In [9], we showed using the mathematical concept of the power of a 

point, how to design a DELTA robot for a prescribed workspace. In this paper, we 

will solve the problem of designing the three translational dof RAF robot to have a 

specified workspace and the highest dexterity. A multi-objective genetic algorithm 
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(MOGA) is used to solve the optimization problem, because of its robustness and 

simplicity. 

This paper is organized as follows: Section 2 presents the architecture of the RAF 

robot. Section 3, is devoted to the kinematic analysis and the determination of the 

workspace of the RAF parallel robot. The dexterity index of the robot is presented 

in Section 3. In Section 4, we carry out the formulation of the optimization problem 

using the genetic algorithm. Section 5 contains the results and discussion. Finally, 

Section 6 contains some conclusions.  

2 Architecture of the RAF parallel robot 

The RAF robot consists of a mobile platform connected to the base by 3 legs. These 

three legs constitute the actuators of the manipulator, whereas two other kinematic 

chains with passive joints are used to eliminate the three rotations of the mobile 

platform with respect to the base (Fig. 1) [1, 2].  

Let 𝑅𝑏 (𝑂𝐵 , 𝑥𝐵 , 𝑦𝐵 , 𝑧𝐵) and 𝑅𝑃(𝑃, 𝑥𝑃 , 𝑦𝑃 , 𝑧𝑃) represent two references frames, which 

are fixed on the base and on the platform, respectively (see Fig. 1). The active legs 

are connected to the base through spherical joints. These spherical joints are 

centered in points 𝐵𝑖 , 𝑖 = 1,2,3, with the base and in points 𝐶𝑖, 𝑖 = 1,2,3, with the 

platform. 

 
Fig. 1  The RAF robot parameters. 

In this work, a standard configuration is selected for the active legs as follows : 

• 𝑟𝐵𝑖 = 𝑟𝐵 ; 𝑟𝐶𝑖 = 𝑟𝐶  (𝑖 = 1, 2, 3) which means that the centers of the spherical 

joints relating the three legs to the base, respectively the platform, are located on a 

circle centered in 𝑂𝐵, respectively 𝑃, and with a radius 𝑟𝐵, respectively 𝑟𝐶 .  

• 𝜃𝐶1 = 𝜃𝐵1 = 𝜃1 = 0 ; 𝜃𝐶2 = 𝜃𝐵2 = 𝜃2 =
2𝜋

3
 ; 𝜃𝐶3 = 𝜃𝐵3 = 𝜃3 =

4𝜋

3
 which 

means that the three centers are arranged at 120∘ from each other.  

 The parameters of the active kinematics’ chains are: 

• 𝑙max: The maximum extension of the active legs.  

• 𝑙min : The minimum extension of the active legs.  

Fig. 1 shows the architecture of one of the passive kinematics chains [2]. Each 

kinematic chain is made of an arm (1) connected to the base (0) by a revolute joint. 

More details on the RAF architectrure are presented and discussed in [1, 2, 3].  
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The parameters of the passive kinematics’ chains are 𝐿1 and 𝐿2 (see Fig. 1). We 

will take the case where 𝐿1 = 𝐿2 = 𝐿. Points 𝐴𝑗, respectively 𝐷𝑗  (𝑗 = 1,2), are 

located on a circle with a radius 𝑟𝐴, respectively 𝑟𝐷. We also have (𝐴1𝑂𝐵𝐴2)̂ = 120∘ 

(see Fig. 1). 

3. Workspace of the RAF robot 

The workspace of the RAF robot is the intersection of two workspaces of the two 

imbricated robots, respectively, the passive part and the active part. 

3.1 Active and passive workspaces of the platform 

The active workspace of the RAF robot is defined by a volume, in the Cartesian 

space, reachable by the center of the platform 𝑃[𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃]. The geometrical model 

of the active kinematic chain is described by the following equation for each 

actuator (for 𝑖 = 1, . . ,3): 

 (𝑅cos𝜃𝑖 − 𝑋𝑃)2 + (𝑅sin𝜃𝑖 − 𝑌𝑃)2 − 𝑍𝑃
2 − 𝑙𝑖

2 = 0 (1) 

It is assumed that the actuators are identical and their lengths vary between the 

minimal value , 𝑙𝑚𝑖𝑛 , and the maximum value, 𝑙𝑚𝑎𝑥  ( 𝑙𝑚𝑖𝑛 = 𝑙𝑚𝑎𝑥/3). The 

reachable points of each one of these legs are confined within a volume delimited 

by two concentric spheres given by (for 𝑖 = 1, . . ,3): 

 (𝑅cos𝜃𝑖 − 𝑋𝑃)2 + (𝑅sin𝜃𝑖 − 𝑌𝑃)2 − 𝑍𝑃
2 − 𝑙max

2 = 0 (2) 

 (𝑅cos𝜃𝑖 − 𝑋𝑃)2 + (𝑅sin𝜃𝑖 − 𝑌𝑃)2 − 𝑍𝑃
2 − 𝑙min

2 = 0 (3) 

  

Fig. 2 Slice of the active workspace at XY plane 

The intersection of the three volumes delimited by the three pairs of concentric 

spheres, represents the active workspace of the manipulator for a given orientation. 
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A slice of the active workspace at 𝑧 = 𝑧𝑘 is shown on Fig. 2. This space is similar 

to that presented by [10] in the case of a Stewart platform of the 6-SPS type. 

However, our problem is less complex, since we have only three actuators instead 

of six. 

Considering the same point 𝑃[𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃] on the platfom. The kinematic model 

for the passive chains can be written as, with 𝑗 = 1,2: 

 𝐎𝐵𝐏 = 𝐎𝑩𝐀𝒋 + 𝐀𝒋𝐂𝒋 + 𝐂𝒋𝐃𝒋 + 𝐃𝒋𝐏 (4) 

𝐎𝐵𝐏 = [

𝑟cos𝛼𝑗

𝑟sin𝛼𝑗

0

] + [

𝐿2cos𝜑1𝑗cos𝛼𝑗

𝐿2cos𝜑1𝑗sin𝛼𝑗

−𝐿2sin𝜑1𝑗

] + [

𝐿1cos𝜑3𝑗cos(𝜑1𝑗 + 𝜑2𝑗)cos𝛼𝑗

𝐿1cos𝜑3𝑗cos(𝜑1𝑗 + 𝜑2𝑗)sin𝛼𝑗

𝐿1cos𝜑3𝑗sin(𝜑1𝑗 + 𝜑2𝑗)

]

+ [

−𝐿1sin𝛼𝑗sin𝜑3𝑗

𝐿1cos𝛼𝑗sin𝜑3𝑗

0

] 

where, 𝜑3𝑗 is the angle between the direction of the 2 forearms and the plane 

generated by the direction of z-axis and that of the arm, 𝜑2𝑗 is the angle between 

the projection of the forearms on the previously defined plane and the direction of 

the arm, and 𝜑1𝑗 is the angle between the direction of the arm and that of the straight 

line through 𝑂 and 𝐴𝑗. In order to eliminate the passive joint variable, we square 

and add these equations 

 
[(𝑟 + 𝐿2cos𝜑1𝑗)cos𝛼𝑗 − 𝑋𝑃]2 + [(𝑟 + 𝐿2cos𝜑1𝑗)sin𝛼𝑗 − 𝑌𝑃]2

+[𝐿2sin𝜑1𝑗 − 𝑍𝑃]2 − 𝐿1
2 = 0

 (5) 

where, 𝑟 = 𝑟𝐴 − 𝑟𝐷. Equation (5) can be expressed as a function of cos𝜑1𝑗 and 

sin𝜑1𝑗 , as follows: 

(2𝑟𝐿2 − 2𝐿2𝑋𝑃cos𝛼𝑗 − 2𝐿2𝑌𝑃sin𝛼𝑗)cos𝜑1𝑗 − 2𝑟𝑋𝑃cos𝛼𝑗 + 2𝐿2𝑍𝑃sin𝜑1𝑗 − 2𝑟𝑌𝑃sin𝛼𝑗

+𝑋𝑃
2 + 𝑟2 + 𝐿2 + 𝑍𝑃

2 + 𝑌𝑃
2 − 𝐿1

2 = 0
(6) 

which can be written as: 

 𝑙𝑗cos𝜑1𝑗 + 𝑚𝑗sin𝜑1𝑗 − 𝑛𝑗 = 0 (7) 

where, 
𝑢𝑗 = 2𝑟𝐿2 − 2𝐿2𝑋𝑃cos𝛼𝑗 − 2𝐿2𝑌𝑃sin𝛼𝑗 ; 𝑚𝑗 = 2𝐿2𝑍𝑃 ; 𝑛𝑗 = −2𝑟𝑌𝑃sin𝛼𝑗 + 𝑋𝑃

2 + 𝑟2 +

𝐿2
2 + 𝑍𝑃

2 + 𝑌𝑃
2 − 𝐿1 − 2𝑟𝑋𝑃cos𝛼𝑗  

Equation (7) can have a solution if and only if for 𝑗 = 1,2:  

 |
𝑛𝑗

√𝑢𝑗
2+𝑚𝑗

2
| ≤ 1 ⇔     𝑛𝑗

2 − (𝑢𝑗
2 + 𝑚𝑗

2) ≤ 0 (8) 
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3.2 Workspace of the RAF robot  

The workspace of the RAF parallel manipulator is defined by the intersection of 

the active workspace and the passive one. (see Fig. 3). 

   
Fig. 3 Workspace of the RAF robot 

• Point 𝑃 is inside the active workspace then, for 𝑖 = 1,2,3:  

 
ℎ𝑎𝑖

max(𝑃) = (𝑅cos𝜃𝑖 − 𝑋𝑃)2 + (𝑅sin𝜃𝑖 − 𝑌𝑃)2 − 𝑍𝑃
2 − 𝐿 𝑚𝑎𝑥 

2 ≤ 0
 (9) 

 ℎ𝑎𝑖
min(𝑃) = (𝑅cos𝜃𝑖 − 𝑋𝑃)2 + (𝑅sin𝜃𝑖 − 𝑌𝑃)2 − 𝑍𝑃

2 − 𝐿 𝑚𝑖𝑛 
2 ≥ 0

 
 (10) 

• Point 𝑃 is inside the passive workspace then, for 𝑗 = 1,2:  

 

ℎ𝑝𝑗(𝑃) = (𝑋𝑃cos𝛼𝑗 + 𝑌𝑃sin𝛼𝑗 − 𝑟)2

+(𝑋𝑃cos𝛼𝑗 + 𝑌𝑃sin𝛼𝑗)2 + 𝑍𝑃
2 + 𝐿2

2 − 𝐿1
2)2

−4𝐿2
2 ((𝑋𝑃cos𝛼𝑗 + 𝑌𝑃sin𝛼𝑗 − 𝑟)2 + 𝑍𝑃

2) ≤ 0 

 (11) 

4. Singularity analysis of The RAF robot  

Due to the complexity of the kinematic model of parallel mechanisms, most of 

the authors proposed numerical methods to analyze their singularities. The approach 

proposed by Romdhane et al. [2] to analyze the singularity of the 3-translational-

DOF parallel manipulator, is a combination of vector analysis and geometric 

analysis. Romdhane shows that this method allows to elucidate and physically 

explain the different singular configurations. The platform can only translate due to 

the two passive chains even in the absence of the active legs. The architecture of the 

passive chains is made such that the axis of the revolute joint with the platform is 

always parallel to the axis of the revolute joint with the base, i.e., the line maintains 

a constant orientation. The velocity of any point of the platform is the same, i.e., 

 𝐕(𝐶1 ∈ ℘/𝐵) = 𝐕(𝐶2 ∈ ℘/𝐵) = 𝐕(𝐶3 ∈ ℘/𝐵) = 𝐕(𝑀 ∈ ℘/𝐵) (12) 

Passive 

workspace 

Active 

workspace 
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We can also write that :  

 𝑙�̇� =
𝑉(M∈℘/𝐵)⋅𝐵𝑖𝑃𝑖

T

∥𝐵𝑖𝑃𝑖∥
= 𝐮𝑖

T ⋅ 𝐕(𝑀 ∈ ℘/𝐵) (13) 

where 𝐮𝑖 is a unit vector along the leg 𝑖 and 𝑙�̇� is the velocity of the linear actuator 

located between 𝐶𝑖 and 𝐵𝑖 . Using matrix representation, we obtain:  

 [

𝑙1̇

𝑙2̇

𝑙3̇

] = [𝐮1
T𝐮2

T𝐮3
T][𝐕(𝑀 ∈ ℘/𝐵)] = 𝐉𝐓[𝐕(𝑀 ∈ ℘/𝐵)] (14) 

where 𝐉 is a jacobian matrix whose columns are the unit vectors (𝐮1, 𝐮2, 𝐮3). We 

have the following relation  

 𝐁𝑖𝐂𝑖 = 𝑙𝑖𝐮𝑖 (15) 

Where for 𝑖 = 1,2,3,  

 𝐁𝑖𝐂𝑖 = 𝐁𝑖𝐎𝐵 + 𝐎𝐵𝐏 + 𝐏𝐂𝑖 = [

𝑥𝑃 − 𝑅cos𝛼𝑖

𝑦𝑃 − 𝑅sin𝛼𝑖

𝑧𝑃

] (16) 

with 𝐎𝐵𝐁𝑖 = [

𝑟𝐵cos𝛼𝑖

𝑟𝐵sin𝛼𝑖

0
], 𝐎𝐵𝐏 = [

𝑥𝑃

𝑦𝑃

𝑧𝑃

], 𝐏𝐂i = [
𝑥𝑃 + 𝑟𝐶cos𝛼𝑖

𝑦𝑃 + 𝑟𝐶sin𝛼𝑖

0
]  

Using Eq. 17 the unit vector 𝐮𝑖 can be expressed as follows :  

 𝐮𝑖 =
𝐵𝑖𝐶𝑖

∥𝐵𝑖𝐶𝑖∥
 (17) 

To evaluate the kinematic performances of robot, researchers have introduced 

several criteria. The dexterity is a measure reflecting the amplification of error due 

to the kinematic and statistic transformations between the joints and the Cartesian 

space. It is of utmost importance that the proposed robot maintains a certain level 

of dexterity over its workspace. Several criteria were proposed in the literature to 

quantify the dexterity of robot manipulators. In this work, we propose the most used 

one, which is the condition number 𝜅(𝐉) of the Jacobean matrix that describes the 

overall kinematic behavior of a robot [15]. The problem of non homogeneity of the 

Jacobean matrix is not encountered in our case since the 3-translational-DOF 

parallel manipulator has only translation degrees of freedom. The local dexterity is 

defined as :  

 𝜅(𝐉) = ‖𝐉‖ ⋅ ‖𝐉‖𝐓 (18) 
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Robust Optimization of the RAF robot  7 

The Jacobian describes the overall kinematic behavior of the considered robot. 

We adopted for the representation the inverse of the condition number, 𝜂 =
1

𝜅(𝐽)
, 

ranging between 0 and 1 (isotropy is reached when 𝜂 = 1). 

The manipulator under study is in a singular configuration if and only if the set 

of the three vectors (𝐁1𝐂1, 𝐁2𝐂2, 𝐁3𝐂3) are linearly dependent [2]. This condition 

depend only on the value of the geometric parameter, the radius 𝑅, which appears 

in the expression of the unit vector 𝐮𝑖. In order to explore the evolution on the local 

dexterity for a given design vector and over the manipulator workspace, Fig. 4 

illustrates the distribution of the inverse of the condition number in the (𝑥, 𝑦) plane 

and for a given value of the radius 𝑅. 

  

Fig. 4 The local dexterity distribution for 𝑅 = 5 and 𝑧 = 5  

5. Synthesis of the RAF robot for a prescribed 

workspace 

5.1Formulation of the problem 

The aim of this section is to formulate the multidimensional optimization 

problem of selecting the design variables for the RAF robot having a specified 

workspace with the best kinematic performance distribution. The desired workspace 

is given by a volume 𝛀 in space.  

The optimization problem can be formulated as follows: 

Given : A specified volume in space 𝛀. 

Find : The parameters of the RAF robot having the smallest workspace that 

includes the specified volume and best kinematic performance. 

The general associated optimization problem, with 𝑛 parameters for a suitably 

chosen objective function 𝐹(𝐈, 𝑃),can be stated as: 
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                 min 𝐹(𝐈, 𝑃) = [𝑓1 𝑓2]T 

 (19) 

Subject to, 

 ℎ𝑎𝑖
max(𝐼, 𝑃𝑘) ≤ 0, 𝑖 = 1, . . ,3;  𝑘 = 1, . . , 𝑁𝑝𝑡: for active workspace constraints. 

ℎ𝑎𝑖
min(𝐼, 𝑃𝑘) ≥ 0, 𝑖 = 1, . . ,3;  𝑘 = 1, . . , 𝑁𝑝𝑡 : for active workspace constraints. 

ℎ𝑝𝑗(𝐼, 𝑃𝑘) ≤ 0, 𝑗 = 1,2;  𝑘 = 1, . . , 𝑁𝑝𝑡 :for passive workspace constraints.  

For all the points 𝑃 inside the specified workspace 𝛀 

where 𝐈 = [𝑥1, 𝑥2, . . . , 𝑥𝑛] is the unknown vector of parameters, and 𝑥𝑖 ∈
[𝑥𝑙min, 𝑥𝑙max], 𝑖 = 1,2, . . , 𝑛 specify the allowable parameters range for each 

variable. 

In this work, we will take the case where 𝛀 is a cube given by 𝑁𝑝𝑡 = 8 points 

(see Fig. 5).  

 

Fig. 5 The scheme of the prescribed workspace 

For every workspace to be generated by the RAF robot, the independent design 

variables are: 

 𝐈 = [𝑟, 𝑙𝑚𝑎𝑥, 𝐿, 𝑅, 𝐻] (20) 

where, 𝑟 = 𝑟𝐴 − 𝑟𝐷: The difference in radius of the passive kinematic chain. 𝑅 =
𝑟𝐵 − 𝑟𝐶 : The difference in radius of the active kinematic chain. 𝑙𝑚𝑎𝑥 : The maximum 

length of the actuator. 𝐿 : The length of the leg. 𝐻 : is a parameter defining how far 

is the specified volume from the base of the RAF robot. The center of the cube is 

taken on the 𝑧 axis because of the symetry of the workspace. 

5.1.1 Power function ratio  

In a previous work [8], the performed optimization proved that one of the passive 

workspace or the active workspace can have a great influence on the quality of the 

optimal solution. This formulation ensures that the desired workspace is obtained 

but leads to a cumbersome structure. A large difference between the dimensions of 

the two chains, passive and active, should be noted. Indeed, the two obtained design 

vectors for the RAF robot present a large base or a large platform. The quality of 

the obtained results depends on the choice of the value of the aggregation coefficient 
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Robust Optimization of the RAF robot  9 

used in the definition of the objective function. In order to overcome this formula-

tion problem and to obtain the passive and active workspaces with similar sizes, a 

new formulation based on the use of power function ratio, is proposed. This ratio is 

defined as: 
𝑓𝑝

𝑓𝑎

≃ 1 

The corresponding objective function is defined as follows:  

𝑓1(𝐈, 𝑃𝑘) = |
𝑓𝑝

𝑓𝑎

− 1| 

where,  

𝑓𝑎 =
∑3

𝑖=1 |ℎ𝑎𝑖
max(𝐈,𝑃𝑘)|

√∑3
𝑖=1 (ℎ𝑎𝑖

max(𝐈,𝑃𝑘))
2

+
∑3

𝑖=1 |ℎ𝑎𝑖
min(𝐈,𝑃𝑘)|

√∑3
𝑖=1 (ℎ𝑎𝑖

min(𝐈,𝑃𝑘))
2 and 

𝑓𝑝 =
∑2

𝑗=1 |ℎ𝑝𝑗(𝐈,𝑃𝑘)|

√∑2
𝑗=1 (ℎ𝑝𝑗(𝐈,𝑃𝑘))

2
 

5.1.2 Dexterity  

Several methods and dexterity indices can be found in the literature, e.g., Yoshi-

kawa [1], Angeles [2], and Gosselin [3]. To compute the kinematic performance of 

a structure, we chose the global dexterity method proposed by Gosselin as it char-

acterizes the isotropy of the robot. A commonly used criterion to evaluate this kin-

ematic performance is the global conditioning index 𝜂𝐺, which describes the isot-

ropy of the kinematic performance. The index, for a given structure described by 

the design vector 𝐈, is defined over a workspace 𝛀 as:  

 𝜂G =
∫ 𝜂L𝑑𝑤

Ω

∫ 𝑑𝑤
Ω

=
∫ 1 κ(𝐉)⁄ 𝑑𝑤

Ω

∫ 𝑑𝑤
Ω

  (21) 

Where 𝜂L is the local dexterity and κ(𝐉) is the condition number of the kinematic 

Jacobian matrix (19). The corresponding objective function is defined as fol-

lows:𝑓2(𝐈) = 𝜂G 

5.2 Results 

The objective is to find the smallest set of parameters, given by 𝐈∗, that can yield 

a RAF robot having a workspace with smallest passive/active workspace that 

includes the given volume in space 𝛀, while, simultaneously, achieving the best 

kinematic performances over the whole workspace. The methodology followed here 

to solve this problem is based on minimizing the multiple design objectives. This 

minimization problem is solved using the the Multi-Objective Genetic Algorithm 

(MOGA) method. The solutions are called Pareto-optimal solutions when an 
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improvement in one objective requires a degradation of another. Fig. 6 shows the 

surface representing the Pareto front. Each point represents the values of the two 

objective functions, respectively 𝑓1 and 𝑓2, obtained by a given design vector. 

 

Fig. 6 Pareto front 

6 Conclusions 

In this work, the workspace of the RAF parallel manipulator having three linear 

actuators, was determined. An optimal dimensional synthesis method suited for the 

RAF robot was presented and solved. In this approach, two objective functions were 

considered. The first one aims at finding the smallest robot having a desired work-

space and the second one is to ensure the best overall dexterity over this workspace. 

The first objective function is based on the concept of the power of a point, which 

was used to calculate the ratio of the passive to the active workspaces. The optimum 

value of the ratio is unity, which ensures the two workspaces having similar sizes. 

The second objective function is based on the condition number of the jacobian 

matrix. The MOGA method was used to find the optimal solutions represented by 

the Pareto front. Two extreme solutions from the Pareto front were taken and their 

CAD models were presented. 

It was shown that favoring the dexterity could lead to a bulky robot and a robot 

with similar workspaces could have a relatively low dexterity. However, the pre-

sented solutions all have a value of dexterity ranging from 0.3 to 0.35, which is 

relatively low. 
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