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Abstract. This paper presents an analytical error prediction model of a 3PRP planar parallel manipula-

tor using the screw theory. This analytical approach is used to find the effect of mechanical inaccura-

cies contributing to the end-effector pose errors and their sensitivity coefficients. Finally, parameter 

sensitivity analysis of non-compensable errors of two different configurations based on their fixed base 

shape namely -shape and U-shape fixed bases are analysed and compared.   

Key words: planar parallel manipulator, error modelling, sensitivity analysis, non-compensable errors, 

mechanical inaccuracies.  

1 Introduction 

Planar parallel manipulators (PPMs) are having higher attention in the recent years 
due to their simplicity in design and other potential advantages over serial manipu-
lators [6]. In specific, manipulators having first joint as active prismatic joint in 
each leg has several advantages than others [5]. In this respect, one of the com-
mercially available manipulators namely Hephaist [3] is a 3PRP U-shape PPM 
and the manipulator proposed by Damien Chablat et al. is a -shape 3-PRP PPM 
[1], both of them are promising in terms of their kinematic and dynamic perform-
ances. This 3PRP configuration has shown potential advantage in industrial usage 
but which of these two base configurations is better in terms of accuracy in pres-
ence of mechanical inaccuracies are  yet  to be explored.  Accuracy analysis of 
these configurations due to the actuator inaccuracies using the geometric approach 
is presented by Yu et al. [8], but in this work, effect of other non-compensable er-
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rors and kinematic parameter errors are not included. It is significant to quantify 
the sources of errors which are contributing the end-effector pose errors in order to 
find the quality of task performed by the manipulator, which directly affects the 
positional accuracy of the manipulator. These pose errors can be of three kinds: 
kinematic errors, encoder errors and the errors due to joint clearances. The kine-
matic errors are due to the misalignments and the manufacturing imperfections 
and tolerances. These kinematic errors for manipulators can be estimated and 
many researches has found methods to quantify and compensate them [3, 4]. En-
coder errors can be of two types, the first one is due to least count of the encoders 
and other one is due to incorrect index of the encoder reading. Index errors can be 
corrected by zero point confirmation, but least count errors are non-compensable. 
Similarly, error due to joint clearances and backlashes are also non-compensable 
in nature. 

Therefore, in this paper, a complete error prediction model considering all pos-
sible errors i.e., due to mechanical inaccuracies (including the kinematic parame-
ter errors and error due to joint clearances in the rotary and prismatic joints which 
are non-compensable in nature) based on screw theory [2] is derived and pre-
sented. This technique is already been utilized and verified by G. Wu et al. [7] for 
modelling the error prediction model for 3-PPR configuration. This configuration 
has a simple model due to its forward kinematics relationship, which is independ-
ent of its end-effector orientation. But, in case of 3-PRP configuration, the kine-
matic relationship is dependent on the end effector orientation. The proposed 
mathematical error model has incorporated all these changes and used it for the er-
ror sensitivity analysis. This errors estimation is done for the xy-plane only, the er-
ror z-axis is not derived in this model as manipulator functioning is restricted to 
xy-plane only. Further, the effects of the non-compensable errors are compared to 
identify the best configuration among U-shape and -shape fixed base configura-
tions (which one is less susceptible to the non-compensable errors).     

2 Kinematic model of the manipulator  

Here in this section, a generalized kinematic solution for the 3PRP configuration 
is presented. This kinematic model is established on the basis of screw theory. The 
kinematic arrangement of the 3PRP configuration is presented in Fig. 1. In Fig. 1, 
the pointT is the position of the end-effector and is its orientation angle, the 

point O represents the origin of the frame of reference, points iG , iP , iR and iF  rep-

resent the beginning limit of the linear actuators, the current position of the linear 
actuators, the point where the passive prismatic joint starts and the point at which 

the prismatic link connects to the end effector of the thi link, respectively. The 
vectors i i , j i , k i , l i and m i are the vectors leading from the fixed reference 

frame (origin) to the end-effector (moving reference frame). Representation of the 
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each vector for the first kinematic chain (leg) is shown in Fig. 1, and it is similar 
to the other kinematic chains with corresponding index number. These vectors are 
characterized by the angles i , i , i , i ,  and i , where angles i , i , i , i
and are with respect to the origin reference frame while i is with respect to end-

effector’s reference frame and i =1,2,3, which is the index of the kinematic link 
chain.                                          

 

Fig. 1 Generalized Kinematic parameter diagram for 3PRP manipulator  

From the closed looped kinematic chain OTFRPGO iiii    

Forward kinematics equation for the position vector of the end-effector, T , is 
given as: 
 3,2,1,  iedcba iiiiiiiiii mlkjiT  (1) 

With, i i = [ icos  isin ] T , j i = [ i'cos  i'sin  ] T , k i = [ i'cos  i'sin ] T ,          

l i = [ i'cos  i'sin ] T , m i = [  i cos   i sin ] T  and 

iii  ' ,   iiii' , iiiii  '      

The inverse kinematics solution for the manipulator can be derived from eq. (1) 
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where, E is the right angle rotation matrix and defined as: E 

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Geometric parameters for the U-shape and -shape fixed base 3-PRP manipula-
tors are given in Table 1 and Table 2. The CAD models are presented in Fig. 2.  
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Table 1.  Geometric parameters for the U-shape fixed base 3PRP manipulator 

Parameters i (in degrees)  i (in degrees)  i (in degrees) i (in degrees) 

i =1 180  90  90+ϕ 0 

i =2 0 + 90 + 90+ϕ 0 

i =3 90  90  90+ϕ 0 

Table 2.  Geometric parameters for the -shape fixed base 3PRP manipulator 

Parameters i (in degrees)  i (in degrees)  i (in degrees) i (in degrees) 

i =1 0 120  90+ϕ 0 

i =2 0  60 + 90+ϕ 0 

i =3 90  90  90+ϕ 0 

 

Fig. 2 CAD models of the U-shape and -shape fixed base 3-PRP manipulators  

3 Jacobian and Singularities of the manipulator 

Velocity expression can be derived from the eq. (1) by taking time derivative and 
eliminating the coefficient of l i  , as below: 

   bBTA  
T

  (3) 

where, A and B  are the forward and inverse Jacobian of the manipulators, re-
spectively.  These matrices are analytically given as follows: 








































33

22

11

22111133

22222222

11111111

jEl00

0jEl0

00jEl

,

mlklEl

mlklEl

mlklEl

TT

TT

TT

TTTT

TTTT

TTTT

ecd

ecd

ecd

BA   

The kinematic Jacobain of the manipulator is given as:  

 BAJ 1  (4) 
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where, Matrix A is never singular while matrix B is singular only when the angle 
 90  , which is not possible for the manipulator within workspace, so neither 

serial nor parallel singularity is present in the manipulator. So this configuration is 
a singularity-free within its given workspace.  

4 Error modelling 

In order to include the effect of joint clearances, the rotary joint the clearance is 

characterized by using a small distance i between the points iP and 'iP in the thi  

link as shown in Fig. 3. To obtain the error for the end effector at point T  eq. (1) is 
differentiated to obtain eq. (5).  

 

Fig. 3 Error variables in the joint parameters of 3PRP manipulator  
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 (6) 

where, T and    are the positioning and orientation error at the end effector. 

Other variables namely, ia , i , ib , i , ic , i , id , i , ie and i show 

the variations in the geometric parameters of the link arrangement. Other than the-
se effects, it is also introduced a joint distance which represents the joint clearance 
of a rotary joint and denoted as i . The associated vector with this distance vari-
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able is n i =  Tii  sincos , by substituting the values of eq. (6) in eq. (5) and 

eliminating the variable id , it gives 
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If substituting the values of 3 ,2 ,1i in eq. (7) and arrange it in vector form as:    
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By multiplying 1A on both sides, using eq. (4) and replacing qJ with qHA 1 , 

where   ,,,,,,,,, edcaq . The error sensitivity equation for the ma-

nipulator is given as:     
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The coefficients of the error vectors in the above relation are the corresponding 
sensitivity matrices related to each error variables. These analytical expressions 
are validated using the virtual prototype with the help of MSC ADAMS software. 
Further, these relations are used for accuracy and sensitivity analyses in the fol-
lowing section. 

5 Error Sensitivity Analysis  

Errors due to joint (bearing) clearances and the actuator inaccuracies (least count 
errors) may cause alteration in the end-effector’s pose which cannot be compen-
sated. Other structural parameter errors related to the link lengths and actuator in-
dexing errors can be compensated by the help of the calibration techniques or pa-
rameter identification methods suggested for parallel manipulators. But the error 
caused due to the presence of clearances, actuator inaccuracies and encoder least 
count errors are non-compensable by such calibration techniques. Therefore, pose 
errors are estimated due to the joint clearances, actuator inaccuracies and encoder 
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least count errors using commercially available data for rotary and prismatic joints 
and, encoder resolution. For the rotary joint, joint clearances are assumed as:  
0 mm  i 0.016 mm and the contact angle i can vary from 0 to 2 radians, 

where i is the center to center distance of the mating bodies of the rotary joints. 

The error variable i depends on the joint clearance of the prismatic joint and an-

gular deviation because of that which is  -0.04°  i 0.04° and the least count 

error is taken as half of the least count which cannot be detected by the encoders 
here taken as 0 mm  ib 0.025 mm. The analytical error prediction model is 

solved simultaneously as an optimization problem using the genetic algorithms. 
For numerical computation, the Matlab function namely, “ga” an in-build genetic 
algorithms optimization solver is used. The test region for the error sensitivity 
analysis is considered as a square area of 80 mm  80 mm for the given actuator 
span of 200 mm in all three legs. To compare the effect of the non-compensable 
errors in U-shape and -shape fixed base parallel configurations the data for joint 
clearances and encoder resolutions are taken from the industrial product cata-
logues [7]. Local maximum possible pose errors of the end-effector are obtained 
through the optimization code for the given workspace region for the constant 
end-effector orientation. Error contour plots are presented in Figs. 4 and 5. 

 

Fig. 4 Non-compensable error contour plots of the U-shape fixed base 3-PRP PPM 

 

Fig. 5 Non-compensable error contour plots of the -shape fixed base 3-PRP PPM 
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The local maximum position errors due to the non-compensable errors in U-shape 
and -shape fixed base parallel configurations are presented in Figs. 4 and 5, re-
spectively. The result shows that the pose errors due the non-compensable errors 
for the selected workspace region are varying from 110 m to 150 m for U-shape 
3-PRP PPM and 70 m to 95 m for -shape 3-PRP PPM. From the results, it is 
observed that -shape (symmetric shape) fixed base configuration performs better 
than U-shape fixed base configurations in presence of non-compensable errors for 
3-PRP kinematic arrangement.    

6 Conclusions 

In this paper, an analytical error prediction model for the planar 3PRP parallel 
configuration is derived by considering all possible mechanical inaccuracies. Solu-
tion for the joint parameter’s dependency on the orientation angle of the end-
effector is solved and demonstrated. From the results, it is found that the -shape 
fixed base configuration is less sensitive to the non-compensable errors. These 
non-compensable errors cannot be compensated by the offline calibration method. 
But, it can be minimized or compensated by using a task-space motion control 
strategy in trajectory tracking, which would be considered as a future work.                 
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